Emad Barsoum


2025

pdf bib
Enhancing One-Shot Pruned Pre-trained Language Models through Sparse-Dense-Sparse Mechanism
Guanchen Li | Xiandong Zhao | Lian Liu | Zeping Li | Yixing Xu | Dong Li | Lu Tian | Jie He | Ashish Sirasao | Emad Barsoum
Proceedings of the 31st International Conference on Computational Linguistics

Pre-trained language models (PLMs) are engineered to be robust in contextual understanding and exhibit outstanding performance in various natural language processing tasks. However, their considerable size incurs significant computational and storage costs. Modern pruning strategies employ retraining-free one-shot techniques to compress PLMs; however, these approaches often lead to an indispensable reduction in performance. In this paper, we propose SDS, a Sparse-Dense-Sparse pruning framework to enhance the performance of the pruned PLMs from a weight distribution optimization perspective. We outline the pruning process in three steps. Initially, we prune less critical connections in the model using conventional one-shot pruning methods. Next, we reconstruct a dense model featuring a pruning-friendly weight distribution by reactivating pruned connections with sparse regularization. Finally, we perform a second pruning round, yielding a superior pruned model compared to the initial pruning. Experiments demonstrate that SDS outperforms the state-of-the-art pruning techniques SparseGPT and Wanda under an identical sparsity configuration. For instance, SDS reduces perplexity by 5.16 on Raw-Wikitext2 and improves average accuracy by 3.86% across multiple zero-shot benchmarks for LLaMA-3-8B compared to Wanda with 2:4 sparsity.

2024

pdf bib
DL-QAT: Weight-Decomposed Low-Rank Quantization-Aware Training for Large Language Models
Wenjing Ke | Zhe Li | Dong Li | Lu Tian | Emad Barsoum
Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing: Industry Track

Improving the efficiency of inference in Large Language Models (LLMs) is a critical area of research. Post-training Quantization (PTQ) is a popular technique, but it often faces challenges at low-bit levels, particularly in downstream tasks. Quantization-aware Training (QAT) can alleviate this problem, but it requires significantly more computational resources. To tackle this, we introduced Weight-Decomposed Low-Rank Quantization-Aware Training (DL-QAT), which merges the advantages of QAT while training only less than 1% of the total parameters. Specifically, we introduce a group-specific quantization magnitude to adjust the overall scale of each quantization group. Within each quantization group, we use LoRA matrices to update the weight size and direction in the quantization space. We validated the effectiveness of our method on the LLaMA and LLaMA2 model families. The results show significant improvements over our baseline method across different quantization granularities. For instance, for LLaMA-7B, our approach outperforms the previous state-of-the-art method by 4.2% in MMLU on 3-bit LLaMA-7B. Additionally, our quantization results on pre-trained models also surpass previous QAT methods, demonstrating the superior performance and efficiency of our approach.