Enwei Zhu
2023
Revisiting De-Identification of Electronic Medical Records: Evaluation of Within- and Cross-Hospital Generalization
Yiyang Liu
|
Jinpeng Li
|
Enwei Zhu
Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing
The de-identification task aims to detect and remove the protected health information from electronic medical records (EMRs). Previous studies generally focus on the within-hospital setting and achieve great successes, while the cross-hospital setting has been overlooked. This study introduces a new de-identification dataset comprising EMRs from three hospitals in China, creating a benchmark for evaluating both within- and cross-hospital generalization. We find significant domain discrepancy between hospitals. A model with almost perfect within-hospital performance struggles when transferred across hospitals. Further experiments show that pretrained language models and some domain generalization methods can alleviate this problem. We believe that our data and findings will encourage investigations on the generalization of medical NLP models.
Deep Span Representations for Named Entity Recognition
Enwei Zhu
|
Yiyang Liu
|
Jinpeng Li
Findings of the Association for Computational Linguistics: ACL 2023
Span-based models are one of the most straightforward methods for named entity recognition (NER). Existing span-based NER systems shallowly aggregate the token representations to span representations. However, this typically results in significant ineffectiveness for long entities, a coupling between the representations of overlapping spans, and ultimately a performance degradation. In this study, we propose DSpERT (Deep Span Encoder Representations from Transformers), which comprises a standard Transformer and a span Transformer. The latter uses low-layered span representations as queries, and aggregates the token representations as keys and values, layer by layer from bottom to top. Thus, DSpERT produces span representations of deep semantics. With weight initialization from pretrained language models, DSpERT achieves performance higher than or competitive with recent state-of-the-art systems on six NER benchmarks. Experimental results verify the importance of the depth for span representations, and show that DSpERT performs particularly well on long-span entities and nested structures. Further, the deep span representations are well structured and easily separable in the feature space.
2022
Boundary Smoothing for Named Entity Recognition
Enwei Zhu
|
Jinpeng Li
Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)
Neural named entity recognition (NER) models may easily encounter the over-confidence issue, which degrades the performance and calibration. Inspired by label smoothing and driven by the ambiguity of boundary annotation in NER engineering, we propose boundary smoothing as a regularization technique for span-based neural NER models. It re-assigns entity probabilities from annotated spans to the surrounding ones. Built on a simple but strong baseline, our model achieves results better than or competitive with previous state-of-the-art systems on eight well-known NER benchmarks. Further empirical analysis suggests that boundary smoothing effectively mitigates over-confidence, improves model calibration, and brings flatter neural minima and more smoothed loss landscapes.