Erik Oveson
2024
Knowledge-Centric Templatic Views of Documents
Isabel Alyssa Cachola
|
Silviu Cucerzan
|
Allen Herring
|
Vuksan Mijovic
|
Erik Oveson
|
Sujay Kumar Jauhar
Findings of the Association for Computational Linguistics: EMNLP 2024
Authors seeking to communicate with broader audiences often share their ideas in various document formats, such as slide decks, newsletters, reports, and posters. Prior work on document generation has generally tackled the creation of each separate format to be a different task, leading to fragmented learning processes, redundancy in models and methods, and disjointed evaluation. We consider each of these documents as templatic views of the same underlying knowledge/content, and we aim to unify the generation and evaluation of these templatic views. We begin by showing that current LLMs are capable of generating various document formats with little to no supervision. Further, a simple augmentation involving a structured intermediate representation can improve performance, especially for smaller models. We then introduce a novel unified evaluation framework that can be adapted to measuring the quality of document generators for heterogeneous downstream applications. This evaluation is adaptable to a range of user defined criteria and application scenarios, obviating the need for task specific evaluation metrics. Finally, we conduct a human evaluation, which shows that people prefer 82% of the documents generated with our method, while correlating more highly with our unified evaluation framework than prior metrics in the literature.
2022
Reinforcement Guided Multi-Task Learning Framework for Low-Resource Stereotype Detection
Rajkumar Pujari
|
Erik Oveson
|
Priyanka Kulkarni
|
Elnaz Nouri
Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)
As large Pre-trained Language Models (PLMs) trained on large amounts of data in an unsupervised manner become more ubiquitous, identifying various types of bias in the text has come into sharp focus. Existing ‘Stereotype Detection’ datasets mainly adopt a diagnostic approach toward large PLMs. Blodgett et. al. (2021) show that there are significant reliability issues with the existing benchmark datasets. Annotating a reliable dataset requires a precise understanding of the subtle nuances of how stereotypes manifest in text. In this paper, we annotate a focused evaluation set for ‘Stereotype Detection’ that addresses those pitfalls by de-constructing various ways in which stereotypes manifest in text. Further, we present a multi-task model that leverages the abundance of data-rich neighboring tasks such as hate speech detection, offensive language detection, misogyny detection, etc., to improve the empirical performance on ‘Stereotype Detection’. We then propose a reinforcement-learning agent that guides the multi-task learning model by learning to identify the training examples from the neighboring tasks that help the target task the most. We show that the proposed models achieve significant empirical gains over existing baselines on all the tasks.
Search
Fix data
Co-authors
- Isabel Alyssa Cachola 1
- Silviu Cucerzan 1
- Allen Herring 1
- Sujay Kumar Jauhar 1
- Priyanka Kulkarni 1
- show all...