Pre-trained large language models, such as ChatGPT, archive outstanding performance in various reasoning tasks without supervised training and were found to have outperformed crowdsourcing workers. Nonetheless, ChatGPT’s performance in the task of implicit discourse relation classification, prompted by a standard multiple-choice question, is still far from satisfactory and considerably inferior to state-of-the-art supervised approaches. This work investigates several proven prompting techniques to improve ChatGPT’s recognition of discourse relations. In particular, we experimented with breaking down the classification task that involves numerous abstract labels into smaller subtasks. Nonetheless, experiment results show that the inference accuracy hardly changes even with sophisticated prompt engineering, suggesting that implicit discourse relation classification is not yet resolvable under zero-shot or few-shot settings.
We present DiscoGeM 2.0, a crowdsourced, parallel corpus of 12,834 implicit discourse relations, with English, German, French and Czech data. We propose and validate a new single-step crowdsourcing annotation method and apply it to collect new annotations in German, French and Czech. The corpus was constructed by having crowdsourced annotators choose a suitable discourse connective for each relation from a set of unambiguous candidates. Every instance was annotated by 10 workers. Our corpus hence represents the first multi-lingual resource that contains distributions of discourse interpretations for implicit relations. The results show that the connective insertion method of discourse annotation can be reliably extended to other languages. The resulting multi-lingual annotations also reveal that implicit relations inferred in one language may differ from those inferred in the translation, meaning the annotations are not always directly transferable. DiscoGem 2.0 promotes the investigation of cross-linguistic differences in discourse marking and could improve automatic discourse parsing applications. It is openly downloadable here: https://github.com/merelscholman/DiscoGeM.
In discourse relation recognition, the classification labels are typically represented as one-hot vectors. However, the categories are in fact not all independent of one another on the contrary, there are several frameworks that describe the labels’ similarities (by e.g. sorting them into a hierarchy or describing them interms of features (Sanders et al., 2021)). Recently, several methods for representing the similarities between labels have been proposed (Zhang et al., 2018; Wang et al., 2018; Xiong et al., 2021). We here explore and extend the Label Confusion Model (Guo et al., 2021) for learning a representation for discourse relation labels. We explore alternative ways of informing the model about the similarities between relations, by representing relations in terms of their names (and parent category), their typical markers, or in terms of CCR features that describe the relations. Experimental results show that exploiting label similarity improves classification results.
Discourse relations have different patterns of marking across different languages. As a result, discourse connectives are often added, omitted, or rephrased in translation. Prior work has shown a tendency for explicitation of discourse connectives, but such work was conducted using restricted sample sizes due to difficulty of connective identification and alignment. The current study exploits automatic methods to facilitate a large-scale study of connectives in English and German parallel texts. Our results based on over 300 types and 18000 instances of aligned connectives and an empirical approach to compare the cross-lingual specificity gap provide strong evidence of the Explicitation Hypothesis. We conclude that discourse relations are indeed more explicit in translation than texts written originally in the same language. Automatic annotations allow us to carry out translation studies of discourse relations on a large scale. Our methodology using relative entropy to study the specificity of connectives also provides more fine-grained insights into translation patterns.
Disagreement in natural language annotation has mostly been studied from a perspective of biases introduced by the annotators and the annotation frameworks. Here, we propose to analyze another source of bias—task design bias, which has a particularly strong impact on crowdsourced linguistic annotations where natural language is used to elicit the interpretation of lay annotators. For this purpose we look at implicit discourse relation annotation, a task that has repeatedly been shown to be difficult due to the relations’ ambiguity. We compare the annotations of 1,200 discourse relations obtained using two distinct annotation tasks and quantify the biases of both methods across four different domains. Both methods are natural language annotation tasks designed for crowdsourcing. We show that the task design can push annotators towards certain relations and that some discourse relation senses can be better elicited with one or the other annotation approach. We also conclude that this type of bias should be taken into account when training and testing models.
Implicit discourse relations can convey more than one relation sense, but much of the research on discourse relations has focused on single relation senses. Recently, DiscoGeM, a novel multi-domain corpus, which contains 10 crowd-sourced labels per relational instance, has become available. In this paper, we analyse the co-occurrences of relations in DiscoGem and show that they are systematic and characteristic of text genre. We then test whether information on multi-label distributions in the data can help implicit relation classifiers. Our results show that incorporating multiple labels in parser training can improve its performance, and yield label distributions which are more similar to human label distributions, compared to a parser that is trained on just a single most frequent label per instance.
In many linguistic fields requiring annotated data, multiple interpretations of a single item are possible. Multi-label annotations more accurately reflect this possibility. However, allowing for multi-label annotations also affects the chance that two coders agree with each other. Calculating inter-coder agreement for multi-label datasets is therefore not trivial. In the current contribution, we evaluate different metrics for calculating agreement on multi-label annotations: agreement on the intersection of annotated labels, an augmented version of Cohen’s Kappa, and precision, recall and F1. We propose a bootstrapping method to obtain chance agreement for each measure, which allows us to obtain an adjusted agreement coefficient that is more interpretable. We demonstrate how various measures affect estimates of agreement on simulated datasets and present a case study of discourse relation annotations. We also show how the proportion of double labels, and the entropy of the label distribution, influences the measures outlined above and how a bootstrapped adjusted agreement can make agreement measures more comparable across datasets in multi-label scenarios.
Obtaining linguistic annotation from novice crowdworkers is far from trivial. A case in point is the annotation of discourse relations, which is a complicated task. Recent methods have obtained promising results by extracting relation labels from either discourse connectives (DCs) or question-answer (QA) pairs that participants provide. The current contribution studies the effect of worker selection and training on the agreement on implicit relation labels between workers and gold labels, for both the DC and the QA method. In Study 1, workers were not specifically selected or trained, and the results show that there is much room for improvement. Study 2 shows that a combination of selection and training does lead to improved results, but the method is cost- and time-intensive. Study 3 shows that a selection-only approach is a viable alternative; it results in annotations of comparable quality compared to annotations from trained participants. The results generalized over both the DC and QA method and therefore indicate that a selection-only approach could also be effective for other crowdsourced discourse annotation tasks.
We present DiscoGeM, a crowdsourced corpus of 6,505 implicit discourse relations from three genres: political speech, literature, and encyclopedic texts. Each instance was annotated by 10 crowd workers. Various label aggregation methods were explored to evaluate how to obtain a label that best captures the meaning inferred by the crowd annotators. The results show that a significant proportion of discourse relations in DiscoGeM are ambiguous and can express multiple relation senses. Probability distribution labels better capture these interpretations than single labels. Further, the results emphasize that text genre crucially affects the distribution of discourse relations, suggesting that genre should be included as a factor in automatic relation classification. We make available the newly created DiscoGeM corpus, as well as the dataset with all annotator-level labels. Both the corpus and the dataset can facilitate a multitude of applications and research purposes, for example to function as training data to improve the performance of automatic discourse relation parsers, as well as facilitate research into non-connective signals of discourse relations.
In data-driven natural language generation, we typically know what relation should be expressed and need to select a connective to lexicalize it. In the current contribution, we analyse whether a sophisticated connective generation module is necessary to select a connective, or whether this can be solved with simple methods (such as random choice between connectives that are known to express a given relation, or usage of a generic language model). Comparing these methods to the distributions of connective choices from a human connective insertion task, we find mixed results: for some relations, it is acceptable to lexicalize them using any of the connectives that mark this relation. However, for other relations (temporals, concessives) either a more detailed relation distinction needs to be introduced, or a more sophisticated connective choice module would be necessary.
Existing parse methods use varying approaches to identify explicit discourse connectives, but their performance has not been consistently evaluated in comparison to each other, nor have they been evaluated consistently on text other than newspaper articles. We here assess the performance on explicit connective identification of three parse methods (PDTB e2e, Lin et al., 2014; the winner of CONLL2015, Wang et al., 2015; and DisSent, Nie et al., 2019), along with a simple heuristic. We also examine how well these systems generalize to different datasets, namely written newspaper text (PDTB), written scientific text (BioDRB), prepared spoken text (TED-MDB) and spontaneous spoken text (Disco-SPICE). The results show that the e2e parser outperforms the other parse methods in all datasets. However, performance drops significantly from the PDTB to all other datasets. We provide a more fine-grained analysis of domain differences and connectives that prove difficult to parse, in order to highlight the areas where gains can be made.
Implicit discourse relation classification is one of the most challenging and important tasks in discourse parsing, due to the lack of connectives as strong linguistic cues. A principle bottleneck to further improvement is the shortage of training data (ca. 18k instances in the Penn Discourse Treebank (PDTB)). Shi et al. (2017) proposed to acquire additional data by exploiting connectives in translation: human translators mark discourse relations which are implicit in the source language explicitly in the translation. Using back-translations of such explicitated connectives improves discourse relation parsing performance. This paper addresses the open question of whether the choice of the translation language matters, and whether multiple translations into different languages can be effectively used to improve the quality of the additional data.
The perspective of being able to crowd-source coherence relations bears the promise of acquiring annotations for new texts quickly, which could then increase the size and variety of discourse-annotated corpora. It would also open the avenue to answering new research questions: Collecting annotations from a larger number of individuals per instance would allow to investigate the distribution of inferred relations, and to study individual differences in coherence relation interpretation. However, annotating coherence relations with untrained workers is not trivial. We here propose a novel two-step annotation procedure, which extends an earlier method by Scholman and Demberg (2017a). In our approach, coherence relation labels are inferred from connectives that workers insert into the text. We show that the proposed method leads to replicable coherence annotations, and analyse the agreement between the obtained relation labels and annotations from PDTB and RSTDT on the same texts.
A number of different discourse connectives can be used to mark the same discourse relation, but it is unclear what factors affect connective choice. One recent account is the Rational Speech Acts theory, which predicts that speakers try to maximize the informativeness of an utterance such that the listener can interpret the intended meaning correctly. Existing prior work uses referential language games to test the rational account of speakers’ production of concrete meanings, such as identification of objects within a picture. Building on the same paradigm, we design a novel Discourse Continuation Game to investigate speakers’ production of abstract discourse relations. Experimental results reveal that speakers significantly prefer a more informative connective, in line with predictions of the RSA model.
Implicit discourse relation recognition is an extremely challenging task due to the lack of indicative connectives. Various neural network architectures have been proposed for this task recently, but most of them suffer from the shortage of labeled data. In this paper, we address this problem by procuring additional training data from parallel corpora: When humans translate a text, they sometimes add connectives (a process known as explicitation). We automatically back-translate it into an English connective and use it to infer a label with high confidence. We show that a training set several times larger than the original training set can be generated this way. With the extra labeled instances, we show that even a simple bidirectional Long Short-Term Memory Network can outperform the current state-of-the-art.
Humans process language word by word and construct partial linguistic structures on the fly before the end of the sentence is perceived. Inspired by this cognitive ability, incremental algorithms for natural language processing tasks have been proposed and demonstrated promising performance. For discourse relation (DR) parsing, however, it is not yet clear to what extent humans can recognize DRs incrementally, because the latent ‘nodes’ of discourse structure can span clauses and sentences. To answer this question, this work investigates incrementality in discourse processing based on a corpus annotated with DR signals. We find that DRs are dominantly signaled at the boundary between the two constituent discourse units. The findings complement existing psycholinguistic theories on expectation in discourse processing and provide direction for incremental discourse parsing.