Gaurav Arora


2024

pdf bib
Intent Detection in the Age of LLMs
Gaurav Arora | Shreya Jain | Srujana Merugu
Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing: Industry Track

Intent detection is a critical component of task-oriented dialogue systems (TODS) which enables the identification of suitable actions to address user utterances at each dialog turn. Traditional approaches relied on computationally efficient supervised sentence transformer encoder models, which require substantial training data and struggle with out-of-scope (OOS) detection. The emergence of generative large language models (LLMs) with intrinsic world knowledge presents new opportunities to address these challenges.In this work, we adapt SOTA LLMs using adaptive in-context learning and chain-of-thought prompting for intent detection, and compare their performance with contrastively fine-tuned sentence transformer (SetFit) models to highlight prediction quality and latency tradeoff. We propose a hybrid system using uncertainty based routing strategy to combine the two approaches that along with negative data augmentation results in achieving the best of both worlds ( i.e. within 2% of native LLM accuracy with 50% less latency). To better understand LLM OOS detection capabilities, we perform controlled experiments revealing that this capability is significantly influenced by the scope of intent labels and the size of the label space. We also introduce a two-step approach utilizing internal LLM representations, demonstrating empirical gains in OOS detection accuracy and F1-score by >5% for the Mistral-7B model.

2023

pdf bib
CoMix: Guide Transformers to Code-Mix using POS structure and Phonetics
Gaurav Arora | Srujana Merugu | Vivek Sembium
Findings of the Association for Computational Linguistics: ACL 2023

Code-mixing is ubiquitous in multilingual societies, which makes it vital to build models for code-mixed data to power human language interfaces. Existing multilingual transformer models trained on pure corpora lack the ability to intermix words of one language into the structure of another. These models are also not robust to orthographic variations. We propose CoMixCoMix is not a trademark and only used to refer to our models for code-mixed data for presentational brevity., a pretraining approach to improve representation of code-mixed data in transformer models by incorporating phonetic signals, a modified attention mechanism, and weak supervision guided generation by parts-of-speech constraints. We show that CoMix improves performance across four code-mixed tasks: machine translation, sequence classification, named entity recognition (NER), and abstractive summarization. It also achieves the new SOTA performance for English-Hinglish translation and NER on LINCE Leaderboard and provides better generalization on out-of-domain translation. Motivated by variations in human annotations, we also propose a new family of metrics based on phonetics and demonstrate that the phonetic variant of BLEU correlates better with human judgement than BLEU on code-mixed text.

2021

pdf bib
Spartans@LT-EDI-EACL2021: Inclusive Speech Detection using Pretrained Language Models
Megha Sharma | Gaurav Arora
Proceedings of the First Workshop on Language Technology for Equality, Diversity and Inclusion

We describe our system that ranked first in Hope Speech Detection (HSD) shared task and fourth in Offensive Language Identification (OLI) shared task, both in Tamil language. The goal of HSD and OLI is to identify if a code-mixed comment or post contains hope speech or offensive content respectively. We pre-train a transformer-based model RoBERTa using synthetically generated code-mixed data and use it in an ensemble along with their pre-trained ULMFiT model available from iNLTK.

2020

pdf bib
iNLTK: Natural Language Toolkit for Indic Languages
Gaurav Arora
Proceedings of Second Workshop for NLP Open Source Software (NLP-OSS)

We present iNLTK, an open-source NLP library consisting of pre-trained language models and out-of-the-box support for Data Augmentation, Textual Similarity, Sentence Embeddings, Word Embeddings, Tokenization and Text Generation in 13 Indic Languages. By using pre-trained models from iNLTK for text classification on publicly available datasets, we significantly outperform previously reported results. On these datasets, we also show that by using pre-trained models and data augmentation from iNLTK, we can achieve more than 95% of the previous best performance by using less than 10% of the training data. iNLTK is already being widely used by the community and has 40,000+ downloads, 600+ stars and 100+ forks on GitHub. The library is available at https://github.com/goru001/inltk.

pdf bib
HINT3: Raising the bar for Intent Detection in the Wild
Gaurav Arora | Chirag Jain | Manas Chaturvedi | Krupal Modi
Proceedings of the First Workshop on Insights from Negative Results in NLP

Intent Detection systems in the real world are exposed to complexities of imbalanced datasets containing varying perception of intent, unintended correlations and domain-specific aberrations. To facilitate benchmarking which can reflect near real-world scenarios, we introduce 3 new datasets created from live chatbots in diverse domains. Unlike most existing datasets that are crowdsourced, our datasets contain real user queries received by the chatbots and facilitates penalising unwanted correlations grasped during the training process. We evaluate 4 NLU platforms and a BERT based classifier and find that performance saturates at inadequate levels on test sets because all systems latch on to unintended patterns in training data.

2019

pdf bib
Does an LSTM forget more than a CNN? An empirical study of catastrophic forgetting in NLP
Gaurav Arora | Afshin Rahimi | Timothy Baldwin
Proceedings of the 17th Annual Workshop of the Australasian Language Technology Association

Catastrophic forgetting — whereby a model trained on one task is fine-tuned on a second, and in doing so, suffers a “catastrophic” drop in performance over the first task — is a hurdle in the development of better transfer learning techniques. Despite impressive progress in reducing catastrophic forgetting, we have limited understanding of how different architectures and hyper-parameters affect forgetting in a network. With this study, we aim to understand factors which cause forgetting during sequential training. Our primary finding is that CNNs forget less than LSTMs. We show that max-pooling is the underlying operation which helps CNNs alleviate forgetting compared to LSTMs. We also found that curriculum learning, placing a hard task towards the end of task sequence, reduces forgetting. We analysed the effect of fine-tuning contextual embeddings on catastrophic forgetting and found that using embeddings as feature extractor is preferable to fine-tuning in continual learning setup.