Weakly supervised learning aims to reduce the cost of labeling data by using expert-designed labeling rules. However, existing methods require experts to design effective rules in a single shot, which is difficult in the absence of proper guidance and tooling. Therefore, it is still an open question whether experts should spend their limited time writing rules or instead providing instance labels via active learning. In this paper, we investigate how to exploit an expert’s limited time to create effective supervision. First, to develop practical guidelines for rule creation, we conduct an exploratory analysis of diverse collections of existing expert-designed rules and find that rule precision is more important than coverage across datasets. Second, we compare rule creation to individual instance labeling via active learning and demonstrate the importance of both across 6 datasets. Third, we propose an interactive learning framework, INTERVAL, that achieves efficiency by automatically extracting candidate rules based on rich patterns (e.g., by prompting a language model), and effectiveness by soliciting expert feedback on both candidate rules and individual instances. Across 6 datasets, INTERVAL outperforms state-of-the-art weakly supervised approaches by 7% in F1. Furthermore, it requires as few as 10 queries for expert feedback to reach F1 values that existing active learning methods cannot match even with 100 queries.
How well can NLP models generalize to a variety of unseen tasks when provided with task instructions? To address this question, we first introduce Super-NaturalInstructions, a benchmark of 1,616 diverse NLP tasks and their expert-written instructions. Our collection covers 76 distinct task types, including but not limited to classification, extraction, infilling, sequence tagging, text rewriting, and text composition. This large and diverse collection of tasks enables rigorous benchmarking of cross-task generalization under instructions—training models to follow instructions on a subset of tasks and evaluating them on the remaining unseen ones.Furthermore, we build Tk-Instruct, a transformer model trained to follow a variety of in-context instructions (plain language task definitions or k-shot examples). Our experiments show that Tk-Instruct outperforms existing instruction-following models such as InstructGPT by over 9% on our benchmark despite being an order of magnitude smaller. We further analyze generalization as a function of various scaling parameters, such as the number of observed tasks, the number of instances per task, and model sizes. We hope our dataset and model facilitate future progress towards more general-purpose NLP models.
Building machine learning models for natural language understanding (NLU) tasks relies heavily on labeled data. Weak supervision has been proven valuable when large amount of labeled data is unavailable or expensive to obtain. Existing works studying weak supervision for NLU either mostly focus on a specific task or simulate weak supervision signals from ground-truth labels. It is thus hard to compare different approaches and evaluate the benefit of weak supervision without access to a unified and systematic benchmark with diverse tasks and real-world weak labeling rules. In this paper, we propose such a benchmark, named WALNUT, to advocate and facilitate research on weak supervision for NLU. WALNUT consists of NLU tasks with different types, including document-level and token-level prediction tasks. WALNUT is the first semi-weakly supervised learning benchmark for NLU, where each task contains weak labels generated by multiple real-world weak sources, together with a small set of clean labels. We conduct baseline evaluations on WALNUT to systematically evaluate the effectiveness of various weak supervision methods and model architectures. Our results demonstrate the benefit of weak supervision for low-resource NLU tasks and highlight interesting patterns across tasks. We expect WALNUT to stimulate further research on methodologies to leverage weak supervision more effectively. The benchmark and code for baselines are available at aka.ms/walnut_benchmark.
State-of-the-art deep neural networks require large-scale labeled training data that is often expensive to obtain or not available for many tasks. Weak supervision in the form of domain-specific rules has been shown to be useful in such settings to automatically generate weakly labeled training data. However, learning with weak rules is challenging due to their inherent heuristic and noisy nature. An additional challenge is rule coverage and overlap, where prior work on weak supervision only considers instances that are covered by weak rules, thus leaving valuable unlabeled data behind. In this work, we develop a weak supervision framework (ASTRA) that leverages all the available data for a given task. To this end, we leverage task-specific unlabeled data through self-training with a model (student) that considers contextualized representations and predicts pseudo-labels for instances that may not be covered by weak rules. We further develop a rule attention network (teacher) that learns how to aggregate student pseudo-labels with weak rule labels, conditioned on their fidelity and the underlying context of an instance. Finally, we construct a semi-supervised learning objective for end-to-end training with unlabeled data, domain-specific rules, and a small amount of labeled data. Extensive experiments on six benchmark datasets for text classification demonstrate the effectiveness of our approach with significant improvements over state-of-the-art baselines.
The COVID-19 pandemic has implications beyond physical health, affecting society and economies. Government efforts to slow down the spread of the virus have had a severe impact on many businesses, including restaurants. Mandatory policies such as restaurant closures, bans on social gatherings, and social distancing restrictions have affected restaurant operations as well as customer preferences (e.g., prompting a demand of stricter hygiene standards). As of now, however, it is not clear how and to what extent the pandemic has affected restaurant reviews, an analysis of which could potentially inform policies for addressing this ongoing situation. In this work, we present our efforts to understand the effects of COVID-19 on restaurant reviews, with a focus on Yelp reviews produced during the pandemic for New York City and Los Angeles County restaurants. Overall, we make the following contributions. First, we assemble a dataset of 600 reviews with manual annotations of fine-grained COVID-19 aspects related to restaurants (e.g., hygiene practices, service changes, sympathy and support for local businesses). Second, we address COVID-19 aspect detection using supervised classifiers, weakly-supervised approaches based on keywords, and unsupervised topic modeling approaches, and experimentally show that classifiers based on pre-trained BERT representations achieve the best performance (F1=0.79). Third, we analyze the number and evolution of COVID-related aspects over time and show that the resulting time series have substantial correlation (Spearman’s 𝜌=0.84) with critical statistics related to the COVID-19 pandemic, including the number of new COVID-19 cases. To our knowledge, this is the first work analyzing the effects of COVID-19 on Yelp restaurant reviews and could potentially inform policies by public health departments, for example, to cover resource utilization.
Extracting structured knowledge from product profiles is crucial for various applications in e-Commerce. State-of-the-art approaches for knowledge extraction were each designed for a single category of product, and thus do not apply to real-life e-Commerce scenarios, which often contain thousands of diverse categories. This paper proposes TXtract, a taxonomy-aware knowledge extraction model that applies to thousands of product categories organized in a hierarchical taxonomy. Through category conditional self-attention and multi-task learning, our approach is both scalable, as it trains a single model for thousands of categories, and effective, as it extracts category-specific attribute values. Experiments on products from a taxonomy with 4,000 categories show that TXtract outperforms state-of-the-art approaches by up to 10% in F1 and 15% in coverage across all categories.
Cross-lingual text classification alleviates the need for manually labeled documents in a target language by leveraging labeled documents from other languages. Existing approaches for transferring supervision across languages require expensive cross-lingual resources, such as parallel corpora, while less expensive cross-lingual representation learning approaches train classifiers without target labeled documents. In this work, we propose a cross-lingual teacher-student method, CLTS, that generates “weak” supervision in the target language using minimal cross-lingual resources, in the form of a small number of word translations. Given a limited translation budget, CLTS extracts and transfers only the most important task-specific seed words across languages and initializes a teacher classifier based on the translated seed words. Then, CLTS iteratively trains a more powerful student that also exploits the context of the seed words in unlabeled target documents and outperforms the teacher. CLTS is simple and surprisingly effective in 18 diverse languages: by transferring just 20 seed words, even a bag-of-words logistic regression student outperforms state-of-the-art cross-lingual methods (e.g., based on multilingual BERT). Moreover, CLTS can accommodate any type of student classifier: leveraging a monolingual BERT student leads to further improvements and outperforms even more expensive approaches by up to 12% in accuracy. Finally, CLTS addresses emerging tasks in low-resource languages using just a small number of word translations.
Health departments have been deploying text classification systems for the early detection of foodborne illness complaints in social media documents such as Yelp restaurant reviews. Current systems have been successfully applied for documents in English and, as a result, a promising direction is to increase coverage and recall by considering documents in additional languages, such as Spanish or Chinese. Training previous systems for more languages, however, would be expensive, as it would require the manual annotation of many documents for each new target language. To address this challenge, we consider cross-lingual learning and train multilingual classifiers using only the annotations for English-language reviews. Recent zero-shot approaches based on pre-trained multi-lingual BERT (mBERT) have been shown to effectively align languages for aspects such as sentiment. Interestingly, we show that those approaches are less effective for capturing the nuances of foodborne illness, our public health application of interest. To improve performance without extra annotations, we create artificial training documents in the target language through machine translation and train mBERT jointly for the source (English) and target language. Furthermore, we show that translating labeled documents to multiple languages leads to additional performance improvements for some target languages. We demonstrate the benefits of our approach through extensive experiments with Yelp restaurant reviews in seven languages. Our classifiers identify foodborne illness complaints in multilingual reviews from the Yelp Challenge dataset, which highlights the potential of our general approach for deployment in health departments.
User-generated reviews can be decomposed into fine-grained segments (e.g., sentences, clauses), each evaluating a different aspect of the principal entity (e.g., price, quality, appearance). Automatically detecting these aspects can be useful for both users and downstream opinion mining applications. Current supervised approaches for learning aspect classifiers require many fine-grained aspect labels, which are labor-intensive to obtain. And, unfortunately, unsupervised topic models often fail to capture the aspects of interest. In this work, we consider weakly supervised approaches for training aspect classifiers that only require the user to provide a small set of seed words (i.e., weakly positive indicators) for the aspects of interest. First, we show that current weakly supervised approaches fail to leverage the predictive power of seed words for aspect detection. Next, we propose a student-teacher approach that effectively leverages seed words in a bag-of-words classifier (teacher); in turn, we use the teacher to train a second model (student) that is potentially more powerful (e.g., a neural network that uses pre-trained word embeddings). Finally, we show that iterative co-training can be used to cope with noisy seed words, leading to both improved teacher and student models. Our proposed approach consistently outperforms previous weakly supervised approaches (by 14.1 absolute F1 points on average) in six different domains of product reviews and six multilingual datasets of restaurant reviews.
In many review classification applications, a fine-grained analysis of the reviews is desirable, because different segments (e.g., sentences) of a review may focus on different aspects of the entity in question. However, training supervised models for segment-level classification requires segment labels, which may be more difficult or expensive to obtain than review labels. In this paper, we employ Multiple Instance Learning (MIL) and use only weak supervision in the form of a single label per review. First, we show that when inappropriate MIL aggregation functions are used, then MIL-based networks are outperformed by simpler baselines. Second, we propose a new aggregation function based on the sigmoid attention mechanism and show that our proposed model outperforms the state-of-the-art models for segment-level sentiment classification (by up to 9.8% in F1). Finally, we highlight the importance of fine-grained predictions in an important public-health application: finding actionable reports of foodborne illness. We show that our model achieves 48.6% higher recall compared to previous models, thus increasing the chance of identifying previously unknown foodborne outbreaks.