Guoqing Luo
2024
UAlberta at SemEval-2024 Task 1: A Potpourri of Methods for Quantifying Multilingual Semantic Textual Relatedness and Similarity
Ning Shi
|
Senyu Li
|
Guoqing Luo
|
Amirreza Mirzaei
|
Ali Rafiei
|
Jai Riley
|
Hadi Sheikhi
|
Mahvash Siavashpour
|
Mohammad Tavakoli
|
Bradley Hauer
|
Grzegorz Kondrak
Proceedings of the 18th International Workshop on Semantic Evaluation (SemEval-2024)
We describe our systems for SemEval-2024 Task 1: Semantic Textual Relatedness. We investigate the correlation between semantic relatedness and semantic similarity. Specifically, we test two hypotheses: (1) similarity is a special case of relatedness, and (2) semantic relatedness is preserved under translation. We experiment with a variety of approaches which are based on explicit semantics, downstream applications, contextual embeddings, large language models (LLMs), as well as ensembles of methods. We find empirical support for our theoretical insights. In addition, our best ensemble system yields highly competitive results in a number of diverse categories. Our code and data are available on GitHub.
2023
Prompt-Based Editing for Text Style Transfer
Guoqing Luo
|
Yu Han
|
Lili Mou
|
Mauajama Firdaus
Findings of the Association for Computational Linguistics: EMNLP 2023
Prompting approaches have been recently explored in text style transfer, where a textual prompt is used to query a pretrained language model (PLM) to generate style-transferred texts word by word in an autoregressive manner. However, such a generation process is less controllable and early prediction errors may affect future word predictions. In this paper, we propose a prompt-based editing approach to text style transfer. Specifically, we prompt a PLM for style classification and use the classification probability to compute a style score. Then, we perform discrete search with word-level editing to maximize a comprehensive scoring function for the style-transfer task. In this way, we transform a prompt-based generation problem into a classification one, which does not suffer from the error accumulation problem and is more controllable than the autoregressive generation of sentences. In our experiments, we performed both automatic and human evaluation on three style-transfer benchmark datasets, and show that our approach largely outperforms the existing systems that have 20 times more parameters. Additional empirical analyses further demonstrate the effectiveness of our approach.
2022
An Empirical Study on the Overlapping Problem of Open-Domain Dialogue Datasets
Yuqiao Wen
|
Guoqing Luo
|
Lili Mou
Proceedings of the Thirteenth Language Resources and Evaluation Conference
Open-domain dialogue systems aim to converse with humans through text, and dialogue research has heavily relied on benchmark datasets. In this work, we observe the overlapping problem in DailyDialog and OpenSubtitles, two popular open-domain dialogue benchmark datasets. Our systematic analysis then shows that such overlapping can be exploited to obtain fake state-of-the-art performance. Finally, we address this issue by cleaning these datasets and setting up a proper data processing procedure for future research.
Search
Co-authors
- Lili Mou 2
- Yu Han 1
- Mauajama Firdaus 1
- Yuqiao Wen 1
- Ning Shi 1
- show all...