Haeju Park


2020

pdf bib
Less is More: Attention Supervision with Counterfactuals for Text Classification
Seungtaek Choi | Haeju Park | Jinyoung Yeo | Seung-won Hwang
Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)

We aim to leverage human and machine intelligence together for attention supervision. Specifically, we show that human annotation cost can be kept reasonably low, while its quality can be enhanced by machine self-supervision. Specifically, for this goal, we explore the advantage of counterfactual reasoning, over associative reasoning typically used in attention supervision. Our empirical results show that this machine-augmented human attention supervision is more effective than existing methods requiring a higher annotation cost, in text classification tasks, including sentiment analysis and news categorization.

2019

pdf bib
MICRON: Multigranular Interaction for Contextualizing RepresentatiON in Non-factoid Question Answering
Hojae Han | Seungtaek Choi | Haeju Park | Seung-won Hwang
Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)

This paper studies the problem of non-factoid question answering, where the answer may span over multiple sentences. Existing solutions can be categorized into representation- and interaction-focused approaches. We combine their complementary strength, by a hybrid approach allowing multi-granular interactions, but represented at word level, enabling an easy integration with strong word-level signals. Specifically, we propose MICRON: Multigranular Interaction for Contextualizing RepresentatiON, a novel approach which derives contextualized uni-gram representation from n-grams. Our contributions are as follows: First, we enable multi-granular matches between question and answer n-grams. Second, by contextualizing word representation with surrounding n-grams, MICRON can naturally utilize word-based signals for query term weighting, known to be effective in information retrieval. We validate MICRON in two public non-factoid question answering datasets: WikiPassageQA and InsuranceQA, showing our model achieves the state of the art among baselines with reported performances on both datasets.

pdf bib
Soft Representation Learning for Sparse Transfer
Haeju Park | Jinyoung Yeo | Gengyu Wang | Seung-won Hwang
Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics

Transfer learning is effective for improving the performance of tasks that are related, and Multi-task learning (MTL) and Cross-lingual learning (CLL) are important instances. This paper argues that hard-parameter sharing, of hard-coding layers shared across different tasks or languages, cannot generalize well, when sharing with a loosely related task. Such case, which we call sparse transfer, might actually hurt performance, a phenomenon known as negative transfer. Our contribution is using adversarial training across tasks, to “soft-code” shared and private spaces, to avoid the shared space gets too sparse. In CLL, our proposed architecture considers another challenge of dealing with low-quality input.