Han Xia
2024
RoCoIns: Enhancing Robustness of Large Language Models through Code-Style Instructions
Yuansen Zhang
|
Xiao Wang
|
Zhiheng Xi
|
Han Xia
|
Tao Gui
|
Qi Zhang
|
Xuanjing Huang
Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024)
Large Language Models (LLMs) have showcased remarkable capabilities in following human instructions. However, recent studies have raised concerns about the robustness of LLMs for natural language understanding (NLU) tasks when prompted with instructions combining textual adversarial samples. In this paper, drawing inspiration from recent works that LLMs are sensitive to the design of the instructions, we utilize instructions in code style, which are more structural and less ambiguous, to replace typically natural language instructions. Through this conversion, we provide LLMs with more precise instructions and strengthen the robustness of LLMs. Moreover, under few-shot scenarios, we propose a novel method to compose in-context demonstrations using both clean and adversarial samples (adversarial context method) to further boost the robustness of the LLMs. Experiments on eight robustness datasets show that our method consistently outperforms prompting LLMs with natural language, for example, with gpt-3.5-turbo on average, our method achieves an improvement of 5.68% in test set accuracy and a reduction of 5.66 points in Attack Success Rate (ASR).
2023
Orthogonal Subspace Learning for Language Model Continual Learning
Xiao Wang
|
Tianze Chen
|
Qiming Ge
|
Han Xia
|
Rong Bao
|
Rui Zheng
|
Qi Zhang
|
Tao Gui
|
Xuanjing Huang
Findings of the Association for Computational Linguistics: EMNLP 2023
Benefiting from massive corpora and advanced hardware, large language models (LLMs) exhibit remarkable capabilities in language understanding and generation. However, their performance degrades in scenarios where multiple tasks are encountered sequentially, also known as catastrophic forgetting. In this paper, we propose orthogonal low-rank adaptation (O-LoRA), a simple and efficient approach for continual learning in language models, effectively mitigating catastrophic forgetting while learning new tasks. Specifically, O-LoRA learns tasks in different (low-rank) vector subspaces that are kept orthogonal to each other in order to minimize interference. Our method induces only marginal additional parameter costs and requires no user data storage for replay. Experimental results on continual learning benchmarks show that our method outperforms state-of-the-art methods. Furthermore, compared to previous approaches, our method excels in preserving the generalization ability of LLMs on unseen tasks.
Search
Co-authors
- Xiao Wang 2
- Qi Zhang 2
- Tao Gui 2
- Xuan-Jing Huang 2
- Tianze Chen 1
- show all...