Haonan Chen


2024

pdf bib
Generalizing Conversational Dense Retrieval via LLM-Cognition Data Augmentation
Haonan Chen | Zhicheng Dou | Kelong Mao | Jiongnan Liu | Ziliang Zhao
Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Conversational search utilizes muli-turn natural language contexts to retrieve relevant passages. Existing conversational dense retrieval models mostly view a conversation as a fixed sequence of questions and responses, overlooking the severe data sparsity problem – that is, users can perform a conversation in various ways, and these alternate conversations are unrecorded. Consequently, they often struggle to generalize to diverse conversations in real-world scenarios. In this work, we propose a framework for generalizing Conversational dense retrieval via LLM-cognition data Augmentation (ConvAug). We first generate multi-level augmented conversations to capture the diverse nature of conversational contexts. Inspired by human cognition, we devise a cognition-aware prompting process to mitigate the generation of false positives, false negatives, and hallucinations. Moreover, we develop a difficulty-adaptive sample filter that selects challenging samples for complex conversations, thereby giving the model a larger learning space. A contrastive learning objective is then employed to train a better conversational context encoder. Extensive experiments conducted on four public datasets, under both normal and zero-shot settings, demonstrate the effectiveness, generalizability, and applicability of ConvAug. The code is released at https://github.com/haon-chen/ConvAug.

2023

pdf bib
Large Language Models Know Your Contextual Search Intent: A Prompting Framework for Conversational Search
Kelong Mao | Zhicheng Dou | Fengran Mo | Jiewen Hou | Haonan Chen | Hongjin Qian
Findings of the Association for Computational Linguistics: EMNLP 2023

Precisely understanding users’ contextual search intent has been an important challenge for conversational search. As conversational search sessions are much more diverse and long-tailed, existing methods trained on limited data still show unsatisfactory effectiveness and robustness to handle real conversational search scenarios. Recently, large language models (LLMs) have demonstrated amazing capabilities for text generation and conversation understanding. In this work, we present a simple yet effective prompting framework, called LLM4CS, to leverage LLMs as a text-based search intent interpreter to help conversational search. Under this framework, we explore three prompting methods to generate multiple query rewrites and hypothetical responses, and propose to aggregate them into an integrated representation that can robustly represent the user’s real contextual search intent. Extensive automatic evaluations and human evaluations on three widely used conversational search benchmarks, including CAsT-19, CAsT-20, and CAsT-21, demonstrate the remarkable performance of our simple LLM4CS framework compared with existing methods and even using human rewrites. Our findings provide important evidence to better understand and leverage LLMs for conversational search.