Haowen Sun


2025

pdf bib
AdaCQR: Enhancing Query Reformulation for Conversational Search via Sparse and Dense Retrieval Alignment
Yilong Lai | Jialong Wu | Congzhi Zhang | Haowen Sun | Deyu Zhou
Proceedings of the 31st International Conference on Computational Linguistics

Conversational Query Reformulation (CQR) has significantly advanced in addressing the challenges of conversational search, particularly those stemming from the latent user intent and the need for historical context. Recent works aimed to boost the performance of CQR through alignment. However, they are designed for one specific retrieval system, which potentially results in sub-optimal generalization. To overcome this limitation, we present a novel framework AdaCQR. By aligning reformulation models with both term-based and semantic-based retrieval systems, AdaCQR enhances the generalizability of information-seeking queries among diverse retrieval environments through a two-stage training strategy. Moreover, two effective approaches are proposed to obtain superior labels and diverse input candidates, boosting the efficiency and robustness of the framework. Experimental results on the TopiOCQA, QReCC and TREC CAsT datasets demonstrate that AdaCQR outperforms the existing methods in a more efficient framework, offering both quantitative and qualitative improvements in conversational query reformulation.

2024

pdf bib
Global and Local Hierarchical Prompt Tuning Framework for Multi-level Implicit Discourse Relation Recognition
Lei Zeng | Ruifang He | Haowen Sun | Jing Xu | Chang Liu | Bo Wang
Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024)

Multi-level implicit discourse relation recognition (MIDRR) is a challenging task to recognize the hierarchical discourse relations between the arguments with the absence of connectives. Recent methods tend to incorporate the static hierarchical structure containing all senses (defined as global hierarchy) into prompt tuning through a path prompt template or hierarchical label refining. Howerver, hierarchical modeling is independent of the verbalizer, resulting in a failure to effectively utilize the output probability distribution information of verbalizer. Besides, they ignore the utilization of the dynamic hierarchical label sequence for each instance (defined as local hierarchy) in prompt tuning. In this paper, we propose a global and local hierarchical prompt tuning (GLHPT) framework, which utilize prior knowledge of PLMs while better incorporating hierarchical information from two aspects. We leverage bottom-up propagated probability as the global hierarchy to inject it into multi-level verbalizer (MLV). Furthermore, we design a local hierarchy-driven contrastive learning (LHCL) to improve the probability distribution of MLV. Finally, our model achieves competitive results on two benchmacks.