Speech Emotion Captioning (SEC) has gradually become an active research task. The emotional content conveyed through human speech are often complex, and classifying them into fixed categories may not be enough to fully capture speech emotions. Describing speech emotions through natural language may be a more effective approach. However, existing SEC methods often produce hallucinations and lose generalization on unseen speech. To overcome these problems, we propose AlignCap, which Aligning Speech Emotion Captioning to Human Preferences based on large language model (LLM) with two properties: 1) Speech-Text Alignment, which minimizing the divergence between the LLM’s response prediction distributions for speech and text inputs using knowledge distillation (KD) Regularization. 2) Human Preference Alignment, where we design Preference Optimization (PO) Regularization to eliminate factuality and faithfulness hallucinations. We also extract emotional clues as a prompt for enriching fine-grained information under KD-Regularization. Experiments demonstrate that AlignCap presents stronger performance to other state-of-the-art methods on Zero-shot SEC task.
Recently, the emergence of ChatGPT has attracted wide attention from the computational linguistics community. Many prior studies have shown that ChatGPT achieves remarkable performance on various NLP tasks in terms of automatic evaluation metrics. However, the ability of ChatGPT to serve as an evaluation metric is still underexplored. Considering assessing the quality of natural language generation (NLG) models is an arduous task and NLG metrics notoriously show their poor correlation with human judgments, we wonder whether ChatGPT is a good NLG evaluation metric. In this report, we provide a preliminary meta-evaluation on ChatGPT to show its reliability as an NLG metric. In detail, we regard ChatGPT as a human evaluator and give task-specific (e.g., summarization) and aspect-specific (e.g., relevance) instruction to prompt ChatGPT to evaluate the generated results of NLG models. We conduct experiments on five NLG meta-evaluation datasets (including summarization, story generation and data-to-text tasks). Experimental results show that compared with previous automatic metrics, ChatGPT achieves state-of-the-art or competitive correlation with human judgments in most cases. In addition, we find that the effectiveness of the ChatGPT evaluator might be influenced by the creation method of the meta-evaluation datasets. For the meta-evaluation datasets which are created greatly depending on the reference and thus are biased, the ChatGPT evaluator might lose its effectiveness. We hope our preliminary study could prompt the emergence of a general-purposed reliable NLG metric.
Pre-trained Language Models (PLMs) are the cornerstone of the modern Natural Language Processing (NLP). However, as PLMs become heavier, fine tuning all their parameters loses their efficiency. Existing parameter-efficient methods generally focus on reducing the trainable parameters in PLMs but neglect the inference speed, which limits the ability to deploy PLMs. In this paper, we propose LayerConnect (hypernetwork-assisted inter-layer connectors) to enhance inference efficiency. Specifically, a light-weight connector with a linear structure is inserted between two Transformer layers, and the parameters inside each connector are tuned by a hypernetwork comprising an interpolator and a down-sampler. We perform extensive experiments on the widely used the GLUE benchmark. The experimental results verify the inference efficiency of our model. Compared to Adapter, our model parameters are reduced to approximately 11.75%, while the performance degradation is kept to less than 5% (2.5 points on average).
This paper presents a deep neural architecture which applies the siamese convolutional neural network sharing model parameters for learning a semantic similarity metric between two sentences. In addition, two different similarity metrics (i.e., the Cosine Similarity and Manhattan similarity) are compared based on this architecture. Our experiments in binary similarity classification for Chinese sentence pairs show that the proposed siamese convolutional architecture with Manhattan similarity outperforms the baselines (i.e., the siamese Long Short-Term Memory architecture and the siamese Bidirectional Long Short-Term Memory architecture) by 8.7 points in accuracy.