Hawau Olamide Toyin
2024
PolyWER: A Holistic Evaluation Framework for Code-Switched Speech Recognition
Karima Kadaoui
|
Maryam Al Ali
|
Hawau Olamide Toyin
|
Ibrahim Mohammed
|
Hanan Aldarmaki
Findings of the Association for Computational Linguistics: EMNLP 2024
Code-switching in speech, particularly between languages that use different scripts, can potentially be correctly transcribed in various forms, including different ways of transliteration of the embedded language into the matrix language script. Traditional methods for measuring accuracy, such as Word Error Rate (WER), are too strict to address this challenge. In this paper, we introduce PolyWER, a proposed framework for evaluating speech recognition systems to handle language-mixing. PolyWER accepts transcriptions of code-mixed segments in different forms, including transliterations and translations. We demonstrate the algorithms use cases through detailed examples, and evaluate it against human judgement. To enable the use of this metric, we appended the annotations of a publicly available Arabic-English code-switched dataset with transliterations and translations of code-mixed speech. We also utilize these additional annotations for fine-tuning ASR models and compare their performance using PolyWER. In addition to our main finding on PolyWER’s effectiveness, our experiments show that alternative annotations could be more effective for fine-tuning monolingual ASR models.
STTATTS: Unified Speech-To-Text And Text-To-Speech Model
Hawau Olamide Toyin
|
Hao Li
|
Hanan Aldarmaki
Findings of the Association for Computational Linguistics: EMNLP 2024
Speech recognition and speech synthesis models are typically trained separately, each with its own set of learning objectives, training data, and model parameters, resulting in two distinct large networks. We propose a parameter-efficient approach to learning ASR and TTS jointly via a multi-task learning objective and shared parameters. Our evaluation demonstrates thatthe performance of our multi-task model is comparable to that of individually trained models while significantly savingcomputational and memory costs (~50% reduction in the total number of parameters required for the two tasks combined). We experiment with English as a resource-rich language, and Arabic as a relatively low-resource language due to shortage of TTS data. Our models are trained with publicly available data, and both the training code and model checkpoints are openly available for further research.