2025
pdf
bib
abs
Exploring the Limitations of Detecting Machine-Generated Text
Jad Doughman
|
Osama Mohammed Afzal
|
Hawau Olamide Toyin
|
Shady Shehata
|
Preslav Nakov
|
Zeerak Talat
Proceedings of the 31st International Conference on Computational Linguistics
Recent improvements in the quality of the generations by large language models have spurred research into identifying machine-generated text. Such work often presents high-performing detectors. However, humans and machines can produce text in different styles and domains, yet the the performance impact of such on machine generated text detection systems remains unclear. In this paper, we audit the classification performance for detecting machine-generated text by evaluating on texts with varying writing styles. We find that classifiers are highly sensitive to stylistic changes and differences in text complexity, and in some cases degrade entirely to random classifiers. We further find that detection systems are particularly susceptible to misclassify easy-to-read texts while they have high performance for complex texts, leading to concerns about the reliability of detection systems. We recommend that future work attends to stylistic factors and reading difficulty levels of human-written and machine-generated text.
2024
pdf
bib
abs
PolyWER: A Holistic Evaluation Framework for Code-Switched Speech Recognition
Karima Kadaoui
|
Maryam Al Ali
|
Hawau Olamide Toyin
|
Ibrahim Mohammed
|
Hanan Aldarmaki
Findings of the Association for Computational Linguistics: EMNLP 2024
Code-switching in speech, particularly between languages that use different scripts, can potentially be correctly transcribed in various forms, including different ways of transliteration of the embedded language into the matrix language script. Traditional methods for measuring accuracy, such as Word Error Rate (WER), are too strict to address this challenge. In this paper, we introduce PolyWER, a proposed framework for evaluating speech recognition systems to handle language-mixing. PolyWER accepts transcriptions of code-mixed segments in different forms, including transliterations and translations. We demonstrate the algorithms use cases through detailed examples, and evaluate it against human judgement. To enable the use of this metric, we appended the annotations of a publicly available Arabic-English code-switched dataset with transliterations and translations of code-mixed speech. We also utilize these additional annotations for fine-tuning ASR models and compare their performance using PolyWER. In addition to our main finding on PolyWER’s effectiveness, our experiments show that alternative annotations could be more effective for fine-tuning monolingual ASR models.
pdf
bib
abs
STTATTS: Unified Speech-To-Text And Text-To-Speech Model
Hawau Olamide Toyin
|
Hao Li
|
Hanan Aldarmaki
Findings of the Association for Computational Linguistics: EMNLP 2024
Speech recognition and speech synthesis models are typically trained separately, each with its own set of learning objectives, training data, and model parameters, resulting in two distinct large networks. We propose a parameter-efficient approach to learning ASR and TTS jointly via a multi-task learning objective and shared parameters. Our evaluation demonstrates thatthe performance of our multi-task model is comparable to that of individually trained models while significantly savingcomputational and memory costs (~50% reduction in the total number of parameters required for the two tasks combined). We experiment with English as a resource-rich language, and Arabic as a relatively low-resource language due to shortage of TTS data. Our models are trained with publicly available data, and both the training code and model checkpoints are openly available for further research.
2023
pdf
bib
abs
ArTST: Arabic Text and Speech Transformer
Hawau Olamide Toyin
|
Amirbek Djanibekov
|
Ajinkya Kulkarni
|
Hanan Aldarmaki
Proceedings of ArabicNLP 2023
We present ArTST, a pre-trained Arabic text and speech transformer for supporting open-source speech technologies for the Arabic language. The model architecture follows the unified-modal framework, SpeechT5, that was recently released for English, and is focused on Modern Standard Arabic (MSA), with plans to extend the model for dialectal and code-switched Arabic in future editions. We pre-trained the model from scratch on MSA speech and text data, and fine-tuned it for the following tasks: Automatic Speech Recognition (ASR), Text-To-Speech synthesis (TTS), and spoken dialect identification. In our experiments comparing ArTST with SpeechT5, as well as with previously reported results in these tasks, ArTST performs on a par with or exceeding the current state-of-the-art in all three tasks. Moreover, we find that our pre-training is conducive for generalization, which is particularly evident in the low-resource TTS task. The pre-trained model as well as the fine-tuned ASR and TTS models are released for research use.