Himanshu Jain
2021
MAPLE – MAsking words to generate blackout Poetry using sequence-to-sequence LEarning
Aditeya Baral
|
Himanshu Jain
|
Deeksha D
|
Dr. Mamatha H R
Proceedings of the 4th International Conference on Natural Language and Speech Processing (ICNLSP 2021)
2020
Semantic Label Smoothing for Sequence to Sequence Problems
Michal Lukasik
|
Himanshu Jain
|
Aditya Menon
|
Seungyeon Kim
|
Srinadh Bhojanapalli
|
Felix Yu
|
Sanjiv Kumar
Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)
Label smoothing has been shown to be an effective regularization strategy in classification, that prevents overfitting and helps in label de-noising. However, extending such methods directly to seq2seq settings, such as Machine Translation, is challenging: the large target output space of such problems makes it intractable to apply label smoothing over all possible outputs. Most existing approaches for seq2seq settings either do token level smoothing, or smooth over sequences generated by randomly substituting tokens in the target sequence. Unlike these works, in this paper, we propose a technique that smooths over well formed relevant sequences that not only have sufficient n-gram overlap with the target sequence, but are also semantically similar. Our method shows a consistent and significant improvement over the state-of-the-art techniques on different datasets.
Search
Co-authors
- Aditeya Baral 1
- Deeksha D 1
- Dr. Mamatha H R 1
- Michal Lukasik 1
- Aditya Menon 1
- show all...