Hiroyuki Deguchi


2024

pdf bib
mbrs: A Library for Minimum Bayes Risk Decoding
Hiroyuki Deguchi | Yusuke Sakai | Hidetaka Kamigaito | Taro Watanabe
Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing: System Demonstrations

pdf bib
Centroid-Based Efficient Minimum Bayes Risk Decoding
Hiroyuki Deguchi | Yusuke Sakai | Hidetaka Kamigaito | Taro Watanabe | Hideki Tanaka | Masao Utiyama
Findings of the Association for Computational Linguistics: ACL 2024

Minimum Bayes risk (MBR) decoding achieved state-of-the-art translation performance by using COMET, a neural metric that has a high correlation with human evaluation.However, MBR decoding requires quadratic time since it computes the expected score between a translation hypothesis and all reference translations.We propose centroid-based MBR (CBMBR) decoding to improve the speed of MBR decoding.Our method clusters the reference translations in the feature space, and then calculates the score using the centroids of each cluster.The experimental results show that our CBMBR not only improved the decoding speed of the expected score calculation 5.7 times, but also outperformed vanilla MBR decoding in translation quality by up to 0.5 COMET in the WMT’22 EnJa, EnDe, EnZh, and WMT’23 EnJa translation tasks.

pdf bib
Detector–Corrector: Edit-Based Automatic Post Editing for Human Post Editing
Hiroyuki Deguchi | Masaaki Nagata | Taro Watanabe
Proceedings of the 25th Annual Conference of the European Association for Machine Translation (Volume 1)

Post-editing is crucial in the real world because neural machine translation (NMT) sometimes makes errors.Automatic post-editing (APE) attempts to correct the outputs of an MT model for better translation quality.However, many APE models are based on sequence generation, and thus their decisions are harder to interpret for actual users.In this paper, we propose “detector–corrector”, an edit-based post-editing model, which breaks the editing process into two steps, error detection and error correction.The detector model tags each MT output token whether it should be corrected and/or reordered while the corrector model generates corrected words for the spans identified as errors by the detector.Experiments on the WMT’20 English–German and English–Chinese APE tasks showed that our detector–corrector improved the translation edit rate (TER) compared to the previous edit-based model and a black-box sequence-to-sequence APE model, in addition, our model is more explainable because it is based on edit operations.

pdf bib
Document-level Translation with LLM Reranking: Team-J at WMT 2024 General Translation Task
Keito Kudo | Hiroyuki Deguchi | Makoto Morishita | Ryo Fujii | Takumi Ito | Shintaro Ozaki | Koki Natsumi | Kai Sato | Kazuki Yano | Ryosuke Takahashi | Subaru Kimura | Tomomasa Hara | Yusuke Sakai | Jun Suzuki
Proceedings of the Ninth Conference on Machine Translation

We participated in the constrained track for English-Japanese and Japanese-Chinese translations at the WMT 2024 General Machine Translation Task. Our approach was to generate a large number of sentence-level translation candidates and select the most probable translation using minimum Bayes risk (MBR) decoding and document-level large language model (LLM) re-ranking. We first generated hundreds of translation candidates from multiple translation models and retained the top 30 candidates using MBR decoding. In addition, we continually pre-trained LLMs on the target language corpora to leverage document-level information. We utilized LLMs to select the most probable sentence sequentially in context from the beginning of the document.

2023

pdf bib
Subset Retrieval Nearest Neighbor Machine Translation
Hiroyuki Deguchi | Taro Watanabe | Yusuke Matsui | Masao Utiyama | Hideki Tanaka | Eiichiro Sumita
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

k-nearest-neighbor machine translation (kNN-MT) (Khandelwal et al., 2021) boosts the translation performance of trained neural machine translation (NMT) models by incorporating example-search into the decoding algorithm. However, decoding is seriously time-consuming, i.e., roughly 100 to 1,000 times slower than standard NMT, because neighbor tokens are retrieved from all target tokens of parallel data in each timestep. In this paper, we propose “Subset kNN-MT”, which improves the decoding speed of kNN-MT by two methods: (1) retrieving neighbor target tokens from a subset that is the set of neighbor sentences of the input sentence, not from all sentences, and (2) efficient distance computation technique that is suitable for subset neighbor search using a look-up table. Our proposed method achieved a speed-up of up to 132.2 times and an improvement in BLEU score of up to 1.6 compared with kNN-MT in the WMT’19 De-En translation task and the domain adaptation tasks in De-En and En-Ja.

pdf bib
NAIST-NICT WMT’23 General MT Task Submission
Hiroyuki Deguchi | Kenji Imamura | Yuto Nishida | Yusuke Sakai | Justin Vasselli | Taro Watanabe
Proceedings of the Eighth Conference on Machine Translation

In this paper, we describe our NAIST-NICT submission to the WMT’23 English ↔ Japanese general machine translation task. Our system generates diverse translation candidates and reranks them using a two-stage reranking system to find the best translation. First, we generated 50 candidates each from 18 translation methods using a variety of techniques to increase the diversity of the translation candidates. We trained seven models per language direction using various combinations of hyperparameters. From these models we used various decoding algorithms, ensembling the models, and using kNN-MT (Khandelwal et al., 2021). We processed the 900 translation candidates through a two-stage reranking system to find the most promising candidate. In the first step, we compared 50 candidates from each translation method using DrNMT (Lee et al., 2021) and returned the candidate with the best score. We ranked the final 18 candidates using COMET-MBR (Fernandes et al., 2022) and returned the best score as the system output. We found that generating diverse translation candidates improved translation quality using the well-designed reranker model.

2022

pdf bib
NAIST-NICT-TIT WMT22 General MT Task Submission
Hiroyuki Deguchi | Kenji Imamura | Masahiro Kaneko | Yuto Nishida | Yusuke Sakai | Justin Vasselli | Huy Hien Vu | Taro Watanabe
Proceedings of the Seventh Conference on Machine Translation (WMT)

In this paper, we describe our NAIST-NICT-TIT submission to the WMT22 general machine translation task. We participated in this task for the English ↔ Japanese language pair. Our system is characterized as an ensemble of Transformer big models, k-nearest-neighbor machine translation (kNN-MT) (Khandelwal et al., 2021), and reranking.In our translation system, we construct the datastore for kNN-MT from back-translated monolingual data and integrate kNN-MT into the ensemble model. We designed a reranking system to select a translation from the n-best translation candidates generated by the translation system. We also use a context-aware model to improve the document-level consistency of the translation.

2021

pdf bib
Synchronous Syntactic Attention for Transformer Neural Machine Translation
Hiroyuki Deguchi | Akihiro Tamura | Takashi Ninomiya
Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing: Student Research Workshop

This paper proposes a novel attention mechanism for Transformer Neural Machine Translation, “Synchronous Syntactic Attention,” inspired by synchronous dependency grammars. The mechanism synchronizes source-side and target-side syntactic self-attentions by minimizing the difference between target-side self-attentions and the source-side self-attentions mapped by the encoder-decoder attention matrix. The experiments show that the proposed method improves the translation performance on WMT14 En-De, WMT16 En-Ro, and ASPEC Ja-En (up to +0.38 points in BLEU).

2020

pdf bib
Bilingual Subword Segmentation for Neural Machine Translation
Hiroyuki Deguchi | Masao Utiyama | Akihiro Tamura | Takashi Ninomiya | Eiichiro Sumita
Proceedings of the 28th International Conference on Computational Linguistics

This paper proposed a new subword segmentation method for neural machine translation, “Bilingual Subword Segmentation,” which tokenizes sentences to minimize the difference between the number of subword units in a sentence and that of its translation. While existing subword segmentation methods tokenize a sentence without considering its translation, the proposed method tokenizes a sentence by using subword units induced from bilingual sentences; this method could be more favorable to machine translation. Evaluations on WAT Asian Scientific Paper Excerpt Corpus (ASPEC) English-to-Japanese and Japanese-to-English translation tasks and WMT14 English-to-German and German-to-English translation tasks show that our bilingual subword segmentation improves the performance of Transformer neural machine translation (up to +0.81 BLEU).

2019

pdf bib
Dependency-Based Self-Attention for Transformer NMT
Hiroyuki Deguchi | Akihiro Tamura | Takashi Ninomiya
Proceedings of the International Conference on Recent Advances in Natural Language Processing (RANLP 2019)

In this paper, we propose a new Transformer neural machine translation (NMT) model that incorporates dependency relations into self-attention on both source and target sides, dependency-based self-attention. The dependency-based self-attention is trained to attend to the modifiee for each token under constraints based on the dependency relations, inspired by Linguistically-Informed Self-Attention (LISA). While LISA is originally proposed for Transformer encoder for semantic role labeling, this paper extends LISA to Transformer NMT by masking future information on words in the decoder-side dependency-based self-attention. Additionally, our dependency-based self-attention operates at sub-word units created by byte pair encoding. The experiments show that our model improves 1.0 BLEU points over the baseline model on the WAT’18 Asian Scientific Paper Excerpt Corpus Japanese-to-English translation task.