The advancement of Large Language Models (LLMs) has led to significant enhancements in the performance of chatbot systems. Many researchers have dedicated their efforts to the development of bringing characteristics to chatbots. While there have been commercial products for developing role-driven chatbots using LLMs, it is worth noting that academic research in this area remains relatively scarce. Our research focuses on investigating the performance of LLMs in constructing Characteristic AI Agents by simulating real-life individuals across different settings. Current investigations have primarily focused on act on roles with simple profiles. In response to this research gap, we create a benchmark for the characteristic AI agents task, including dataset, techniques, and evaluation metrics. A dataset called “Character100” is built for this benchmark, comprising the most-visited people on Wikipedia for language models to role-play. With the constructed dataset, we conduct comprehensive assessment of LLMs across various settings. In addition, we devise a set of automatic metrics for quantitative performance evaluation. The experimental results underscore the potential directions for further improvement in the capabilities of LLMs in constructing characteristic AI agents. The benchmark is available at https://github.com/nuaa-nlp/Character100.
For the task of fine-grained entity typing (FET), due to the use of a large number of entity types, it is usually considered too costly to manually annotating a training dataset that contains an ample number of examples for each type. A common way to address this problem is to use distantly annotated training data that contains incorrect labels. However, the performance of models trained solely with such data can be limited by the errors in the automatic annotation. Recently, there are a few approaches that no longer follow this conventional way. But without using sufficient direct entity typing supervision may also cause them to yield inferior performance. In this paper, we propose a new approach that can avoid the need of creating distantly labeled data whenever there is a new type schema. We first train an entity typing model that have an extremely board type coverage by using the ultra-fine entity typing data. Then, when there is a need to produce a model for a newly designed fine-grained entity type schema. We can simply fine-tune the previously trained model with a small number of examples annotated under this schema. Experimental results show that our approach achieves outstanding performance for FET under the few-shot setting. It can also outperform state-of-the-art weak supervision based methods after fine-tuning the model with only a small size manually annotated training set.
Open-domain multi-turn dialogue generation encounters the significant challenge of lacking various types of knowledge from diverse sources. Existing models typically focus on identifying specific types of dialogue knowledge and utilize corresponding datasets for training. However, this approach often leads to limited generalization capabilities and increased computational resource requirements. Recently, large language models (LLMs) have shown impressive performance on natural language processing tasks. To harness the knowledge storage of LLMs, we propose a framework named KnowEE that explores multi-source multi-type knowledge from LLMs by leveraging diverse datasets and then exploits the obtained knowledge for response generation. Our framework comprises two phases: First, we leverage five external datasets encompassing various types of knowledge to extract the most relevant samples to the dialogue context which are served as prompts to generate corresponding type of knowledge; Second, we inject the acquired knowledge into the ongoing dialogue context in fine-grained and coarse-grained manners, which is then fed into LLMs to generate the final dialogue response. Both automatic and manual evaluation results validate the effectiveness of our framework in exploring and exploiting multi-source multi-type knowledge to generate coherent, informative, and fluent responses.
Recently, there is an effort to extend fine-grained entity typing by using a richer and ultra-fine set of types, and labeling noun phrases including pronouns and nominal nouns instead of just named entity mentions. A key challenge for this ultra-fine entity typing task is that human annotated data are extremely scarce, and the annotation ability of existing distant or weak supervision approaches is very limited. To remedy this problem, in this paper, we propose to obtain training data for ultra-fine entity typing by using a BERT Masked Language Model (MLM). Given a mention in a sentence, our approach constructs an input for the BERT MLM so that it predicts context dependent hypernyms of the mention, which can be used as type labels. Experimental results demonstrate that, with the help of these automatically generated labels, the performance of an ultra-fine entity typing model can be improved substantially. We also show that our approach can be applied to improve traditional fine-grained entity typing after performing simple type mapping.
Fine-grained entity typing is a challenging task with wide applications. However, most existing datasets for this task are in English. In this paper, we introduce a corpus for Chinese fine-grained entity typing that contains 4,800 mentions manually labeled through crowdsourcing. Each mention is annotated with free-form entity types. To make our dataset useful in more possible scenarios, we also categorize all the fine-grained types into 10 general types. Finally, we conduct experiments with some neural models whose structures are typical in fine-grained entity typing and show how well they perform on our dataset. We also show the possibility of improving Chinese fine-grained entity typing through cross-lingual transfer learning.
Lack of labeled training data is a major bottleneck for neural network based aspect and opinion term extraction on product reviews. To alleviate this problem, we first propose an algorithm to automatically mine extraction rules from existing training examples based on dependency parsing results. The mined rules are then applied to label a large amount of auxiliary data. Finally, we study training procedures to train a neural model which can learn from both the data automatically labeled by the rules and a small amount of data accurately annotated by human. Experimental results show that although the mined rules themselves do not perform well due to their limited flexibility, the combination of human annotated data and rule labeled auxiliary data can improve the neural model and allow it to achieve performance better than or comparable with the current state-of-the-art.
Fine-grained entity typing is a challenging problem since it usually involves a relatively large tag set and may require to understand the context of the entity mention. In this paper, we use entity linking to help with the fine-grained entity type classification process. We propose a deep neural model that makes predictions based on both the context and the information obtained from entity linking results. Experimental results on two commonly used datasets demonstrates the effectiveness of our approach. On both datasets, it achieves more than 5% absolute strict accuracy improvement over the state of the art.
In this paper, we study a new entity linking problem where both the entity mentions and the target entities are within a same social media platform. Compared with traditional entity linking problems that link mentions to a knowledge base, this new problem have less information about the target entities. However, if we can successfully link mentions to entities within a social media platform, we can improve a lot of applications such as comparative study in business intelligence and opinion leader finding. To study this problem, we constructed a dataset called Yelp-EL, where the business mentions in Yelp reviews are linked to their corresponding businesses on the platform. We conducted comprehensive experiments and analysis on this dataset with a learning to rank model that takes different types of features as input, as well as a few state-of-the-art entity linking approaches. Our experimental results show that two types of features that are not available in traditional entity linking: social features and location features, can be very helpful for this task.