Honguk Woo
2024
Semantic Skill Grounding for Embodied Instruction-Following in Cross-Domain Environments
Sangwoo Shin
|
SeungHyun Kim
|
Youngsoo Jang
|
Moontae Lee
|
Honguk Woo
Findings of the Association for Computational Linguistics: ACL 2024
In embodied instruction-following (EIF), the integration of pretrained language models (LMs) as task planners emerges as a significant branch, where tasks are planned at the skill level by prompting LMs with pretrained skills and user instructions. However, grounding these pretrained skills in different domains remains challenging due to their intricate entanglement with the domain-specific knowledge. To address this challenge, we present a semantic skill grounding (SemGro) framework that leverages the hierarchical nature of semantic skills. SemGro recognizes the broad spectrum of these skills, ranging from short-horizon low-semantic skills that are universally applicable across domains to long-horizon rich-semantic skills that are highly specialized and tailored for particular domains. The framework employs an iterative skill decomposition approach, starting from the higher levels of semantic skill hierarchy and then moving downwards, so as to ground each planned skill to an executable level within the target domain. To do so, we use the reasoning capabilities of LMs for composing and decomposing semantic skills, as well as their multi-modal extension for assessing the skill feasibility in the target domain. Our experiments in the VirtualHome benchmark show the efficacy of SemGro in 300 cross-domain EIF scenarios.
LLM-Based Offline Learning for Embodied Agents via Consistency-Guided Reward Ensemble
Yujeong Lee
|
Sangwoo Shin
|
Wei-Jin Park
|
Honguk Woo
Findings of the Association for Computational Linguistics: EMNLP 2024
Employing large language models (LLMs) to enable embodied agents has become popular, yet it presents several limitations in practice. In this work, rather than using LLMs directly as agents, we explore their use as tools for embodied agent learning. Specifically, to train separate agents via offline reinforcement learning (RL), an LLM is used to provide dense reward feedback on individual actions in training datasets. In doing so, we present a consistency-guided reward ensemble framework (CoREN), designed for tackling difficulties in grounding LLM-generated estimates to the target environment domain. The framework employs an adaptive ensemble of spatio-temporally consistent rewards to derive domain-grounded rewards in the training datasets, thus enabling effective offline learning of embodied agents in different environment domains. Experiments with the VirtualHome benchmark demonstrate that CoREN significantly outperforms other offline RL agents, and it also achieves comparable performance to state-of-the-art LLM-based agents with 8B parameters, despite CoREN having only 117M parameters for the agent policy network and using LLMs only for training.
Search
Co-authors
- Sangwoo Shin 2
- SeungHyun Kim 1
- Youngsoo Jang 1
- Moontae Lee 1
- Yujeong Lee 1
- show all...