2024
pdf
bib
abs
Multilingual Machine Translation with Large Language Models: Empirical Results and Analysis
Wenhao Zhu
|
Hongyi Liu
|
Qingxiu Dong
|
Jingjing Xu
|
Shujian Huang
|
Lingpeng Kong
|
Jiajun Chen
|
Lei Li
Findings of the Association for Computational Linguistics: NAACL 2024
Large language models (LLMs) have demonstrated remarkable potential in handling multilingual machine translation (MMT). In this paper, we systematically investigate the advantages and challenges of LLMs for MMT by answering two questions: 1) How well do LLMs perform in translating massive languages? 2) Which factors affect LLMs’ performance in translation? We thoroughly evaluate eight popular LLMs, including ChatGPT and GPT-4. Our empirical results show that translation capabilities of LLMs are continually involving. GPT-4 has beat the strong supervised baseline NLLB in 40.91% of translation directions but still faces a large gap towards the commercial translation system like Google Translate, especially on low-resource languages. Through further analysis, we discover that LLMs exhibit new working patterns when used for MMT. First, LLM can acquire translation ability in a resource-efficient way and generate moderate translation even on zero-resource languages. Second, instruction semantics can surprisingly be ignored when given in-context exemplars. Third, cross-lingual exemplars can provide better task guidance for low-resource translation than exemplars in the same language pairs. Code will be released at: https://github.com/NJUNLP/MMT-LLM.
pdf
bib
abs
KV Cache Compression, But What Must We Give in Return? A Comprehensive Benchmark of Long Context Capable Approaches
Jiayi Yuan
|
Hongyi Liu
|
Shaochen Zhong
|
Yu-Neng Chuang
|
Songchen Li
|
Guanchu Wang
|
Duy Le
|
Hongye Jin
|
Vipin Chaudhary
|
Zhaozhuo Xu
|
Zirui Liu
|
Xia Hu
Findings of the Association for Computational Linguistics: EMNLP 2024
Long context capability is a crucial competency for large language models (LLMs) as it mitigates the human struggle to digest long-form texts. This capability enables complex task-solving scenarios such as book summarization, code assistance, and many more tasks that are traditionally manpower-intensive. However, transformer-based LLMs face significant challenges with long context input due to the growing size of the KV cache and the intrinsic complexity of attending to extended inputs; where multiple schools of efficiency-driven approaches — such as KV cache quantization, token dropping, prompt compression, linear-time sequence models, and hybrid architectures — have been proposed to produce efficient yet long context-capable models. Despite these advancements, no existing work has comprehensively benchmarked these methods in a reasonably aligned environment. In this work, we fill this gap by providing a taxonomy of current methods and evaluating 10+ state-of-the-art approaches across seven categories of long context tasks. Our work reveals numerous previously unknown phenomena and offers insights — as well as a friendly workbench — for the future development of long context-capable LLMs. The source code is available at https://github.com/henryzhongsc/longctx_bench.
pdf
bib
abs
Named Entity Recognition Under Domain Shift via Metric Learning for Life Sciences
Hongyi Liu
|
Qingyun Wang
|
Payam Karisani
|
Heng Ji
Proceedings of the 2024 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 1: Long Papers)
Named entity recognition is a key component of Information Extraction (IE), particularly in scientific domains such as biomedicine and chemistry, where large language models (LLMs), e.g., ChatGPT, fall short. We investigate the applicability of transfer learning for enhancing a named entity recognition model trained in the biomedical domain (the source domain) to be used in the chemical domain (the target domain). A common practice for training such a model in a few-shot learning setting is to pretrain the model on the labeled source data, and then, to finetune it on a hand-full of labeled target examples. In our experiments, we observed that such a model is prone to mislabeling the source entities, which can often appear in the text, as the target entities. To alleviate this problem, we propose a model to transfer the knowledge from the source domain to the target domain, but, at the same time, to project the source entities and target entities into separate regions of the feature space. This diminishes the risk of mislabeling the source entities as the target entities. Our model consists of two stages: 1) entity grouping in the source domain, which incorporates knowledge from annotated events to establish relations between entities, and 2) entity discrimination in the target domain, which relies on pseudo labeling and contrastive learning to enhance discrimination between the entities in the two domains. We conduct our extensive experiments across three source and three target datasets, demonstrating that our method outperforms the baselines by up to 5% absolute value. Code, data, and resources are publicly available for research purposes: https://github.com/Lhtie/Bio-Domain-Transfer .
2022
pdf
bib
abs
CMB AI Lab at SemEval-2022 Task 11: A Two-Stage Approach for Complex Named Entity Recognition via Span Boundary Detection and Span Classification
Keyu Pu
|
Hongyi Liu
|
Yixiao Yang
|
Jiangzhou Ji
|
Wenyi Lv
|
Yaohan He
Proceedings of the 16th International Workshop on Semantic Evaluation (SemEval-2022)
This paper presents a solution for the SemEval-2022 Task 11 Multilingual Complex Named Entity Recognition. What is challenging in this task is detecting semantically ambiguous and complex entities in short and low-context settings. Our team (CMB AI Lab) propose a two-stage method to recognize the named entities: first, a model based on biaffine layer is built to predict span boundaries, and then a span classification model based on pooling layer is built to predict semantic tags of the spans. The basic pre-trained models we choose are XLM-RoBERTa and mT5. The evaluation result of our approach achieves an F1 score of 84.62 on sub-task 13, which ranks the third on the learder board.