Current Knowledge-Grounded Dialogue Generation (KDG) models specialize in producing rational and factual responses. However, to establish long-term relationships with users, the KDG model needs the capability to generate responses in a desired style or attribute. Thus, we study a new problem: Stylized Knowledge-Grounded Dialogue Generation (SKDG). It presents two challenges: (1) How to train a SKDG model where no <context, knowledge, stylized response> triples are available. (2) How to cohere with context and preserve the knowledge when generating a stylized response. In this paper, we propose a novel disentangled template rewriting (DTR) method which generates responses via combing disentangled style templates (from monolingual stylized corpus) and content templates (from KDG corpus). The entire framework is end-to-end differentiable and learned without supervision. Extensive experiments on two benchmarks indicate that DTR achieves a significant improvement on all evaluation metrics compared with previous state-of-the-art stylized dialogue generation methods. Besides, DTR achieves comparable performance with the state-of-the-art KDG methods in standard KDG evaluation setting.
Responsing with image has been recognized as an important capability for an intelligent conversational agent. Yet existing works only focus on exploring the multimodal dialogue models which depend on retrieval-based methods, but neglecting generation methods. To fill in the gaps, we first present a new task: multimodal dialogue response generation (MDRG) - given the dialogue history, one model needs to generate a text sequence or an image as response. Learning such a MDRG model often requires multimodal dialogues containing both texts and images which are difficult to obtain. Motivated by the challenge in practice, we consider MDRG under a natural assumption that only limited training examples are available. In such a low-resource setting, we devise a novel conversational agent, Divter, in order to isolate parameters that depend on multimodal dialogues from the entire generation model. By this means, the major part of the model can be learned from a large number of text-only dialogues and text-image pairs respectively, then the whole parameters can be well fitted using the limited training examples. Extensive experiments demonstrate our method achieves state-of-the-art results in both automatic and human evaluation, and can generate informative text and high-resolution image responses.
This paper focuses on the Data Augmentation for low-resource Natural Language Understanding (NLU) tasks. We propose Prompt-based Data Augmentation model (PromDA) which only trains small-scale Soft Prompt (i.e., a set of trainable vectors) in the frozen Pre-trained Language Models (PLMs). This avoids human effort in collecting unlabeled in-domain data and maintains the quality of generated synthetic data. In addition, PromDA generates synthetic data via two different views and filters out the low-quality data using NLU models. Experiments on four benchmarks show that synthetic data produced by PromDA successfully boost up the performance of NLU models which consistently outperform several competitive baseline models, including a state-of-the-art semi-supervised model using unlabeled in-domain data. The synthetic data from PromDA are also complementary with unlabeled in-domain data. The NLU models can be further improved when they are combined for training.
We study the problem of coarse-grained response selection in retrieval-based dialogue systems. The problem is equally important with fine-grained response selection, but is less explored in existing literature. In this paper, we propose a Contextual Fine-to-Coarse (CFC) distilled model for coarse-grained response selection in open-domain conversations. In our CFC model, dense representations of query, candidate contexts and responses is learned based on the multi-tower architecture using contextual matching, and richer knowledge learned from the one-tower architecture (fine-grained) is distilled into the multi-tower architecture (coarse-grained) to enhance the performance of the retriever. To evaluate the performance of the proposed model, we construct two new datasets based on the Reddit comments dump and Twitter corpus. Extensive experimental results on the two datasets show that the proposed method achieves huge improvement over all evaluation metrics compared with traditional baseline methods.
Recently, various response generation models for two-party conversations have achieved impressive improvements, but less effort has been paid to multi-party conversations (MPCs) which are more practical and complicated. Compared with a two-party conversation where a dialogue context is a sequence of utterances, building a response generation model for MPCs is more challenging, since there exist complicated context structures and the generated responses heavily rely on both interlocutors (i.e., speaker and addressee) and history utterances. To address these challenges, we present HeterMPC, a heterogeneous graph-based neural network for response generation in MPCs which models the semantics of utterances and interlocutors simultaneously with two types of nodes in a graph. Besides, we also design six types of meta relations with node-edge-type-dependent parameters to characterize the heterogeneous interactions within the graph. Through multi-hop updating, HeterMPC can adequately utilize the structural knowledge of conversations for response generation. Experimental results on the Ubuntu Internet Relay Chat (IRC) channel benchmark show that HeterMPC outperforms various baseline models for response generation in MPCs.
Generating natural and informative texts has been a long-standing problem in NLP. Much effort has been dedicated into incorporating pre-trained language models (PLMs) with various open-world knowledge, such as knowledge graphs or wiki pages. However, their ability to access and manipulate the task-specific knowledge is still limited on downstream tasks, as this type of knowledge is usually not well covered in PLMs and is hard to acquire. To address the problem, we propose augmenting TExt Generation via Task-specific and Open-world Knowledge (TegTok) in a unified framework. Our model selects knowledge entries from two types of knowledge sources through dense retrieval and then injects them into the input encoding and output decoding stages respectively on the basis of PLMs. With the help of these two types of knowledge, our model can learn what and how to generate. Experiments on two text generation tasks of dialogue generation and question generation, and on two datasets show that our method achieves better performance than various baseline models.
Conversational Recommender System (CRS), which aims to recommend high-quality items to users through interactive conversations, has gained great research interest recently. A CRS is usually composed of a recommendation module and a generation module. In the previous work, these two modules are loosely connected in the model training and are shallowly integrated during inference, where a simple switching or copy mechanism is adopted to incorporate recommended items into generated responses. Moreover, the current end-to-end neural models trained on small crowd-sourcing datasets (e.g., 10K dialogs in the ReDial dataset) tend to overfit and have poor chit-chat ability. In this work, we propose a novel unified framework that integrates recommendation into the dialog (RecInDial) generation by introducing a vocabulary pointer. To tackle the low-resource issue in CRS, we finetune the large-scale pretrained language models to generate fluent and diverse responses, and introduce a knowledge-aware bias learned from an entity-oriented knowledge graph to enhance the recommendation performance. Furthermore, we propose to evaluate the CRS models in an end-to-end manner, which can reflect the overall performance of the entire system rather than the performance of individual modules, compared to the separate evaluations of the two modules used in previous work. Experiments on the benchmark dataset ReDial show our RecInDial model significantly surpasses the state-of-the-art methods. More extensive analyses show the effectiveness of our model.
Arguably, the visual perception of conversational agents to the physical world is a key way for them to exhibit the human-like intelligence. Image-grounded conversation is thus proposed to address this challenge. Existing works focus on exploring the multimodal dialog models that ground the conversation on a given image. In this paper, we take a step further to study image-grounded conversation under a fully open-ended setting where no paired dialog and image are assumed available. Specifically, we present Maria, a neural conversation agent powered by the visual world experiences which are retrieved from a large-scale image index. Maria consists of three flexible components, i.e., text-to-image retriever, visual concept detector and visual-knowledge-grounded response generator. The retriever aims to retrieve a correlated image to the dialog from an image index, while the visual concept detector extracts rich visual knowledge from the image. Then, the response generator is grounded on the extracted visual knowledge and dialog context to generate the target response. Extensive experiments demonstrate Maria outperforms previous state-of-the-art methods on automatic metrics and human evaluation, and can generate informative responses that have some visual commonsense of the physical world.
In recent years, world business in online discussions and opinion sharing on social media is booming. Re-entry prediction task is thus proposed to help people keep track of the discussions which they wish to continue. Nevertheless, existing works only focus on exploiting chatting history and context information, and ignore the potential useful learning signals underlying conversation data, such as conversation thread patterns and repeated engagement of target users, which help better understand the behavior of target users in conversations. In this paper, we propose three interesting and well-founded auxiliary tasks, namely, Spread Pattern, Repeated Target user, and Turn Authorship, as the self-supervised signals for re-entry prediction. These auxiliary tasks are trained together with the main task in a multi-task manner. Experimental results on two datasets newly collected from Twitter and Reddit show that our method outperforms the previous state-of-the-arts with fewer parameters and faster convergence. Extensive experiments and analysis show the effectiveness of our proposed models and also point out some key ideas in designing self-supervised tasks.
The task of Conversational Recommendation System (CRS), i.e., recommender dialog system, aims to recommend precise items to users through natural language interactions. Though recent end-to-end neural models have shown promising progress on this task, two key challenges still remain. First, the recommended items cannot be always incorporated into the generated response precisely and appropriately. Second, only the items mentioned in the training corpus have a chance to be recommended in the conversation. To tackle these challenges, we introduce a novel framework called NTRD for recommender dialogue system that can decouple the dialogue generation from the item recommendation. NTRD has two key components, i.e., response template generator and item selector. The former adopts an encoder-decoder model to generate a response template with slot locations tied to target items, while the latter fills in slot locations with the proper items using a sufficient attention mechanism. Our approach combines the strengths of both classical slot filling approaches (that are generally controllable) and modern neural NLG approaches (that are generally more natural and accurate). Extensive experiments on the benchmark ReDial show our approach significantly outperforms the previous state-of-the-art methods. Besides, our approach has the unique advantage to produce novel items that do not appear in the training set of dialogue corpus. The code is available at https://github.com/jokieleung/NTRD.
We present open domain dialogue generation with meta-words. A meta-word is a structured record that describes attributes of a response, and thus allows us to explicitly model the one-to-many relationship within open domain dialogues and perform response generation in an explainable and controllable manner. To incorporate meta-words into generation, we propose a novel goal-tracking memory network that formalizes meta-word expression as a goal in response generation and manages the generation process to achieve the goal with a state memory panel and a state controller. Experimental results from both automatic evaluation and human judgment on two large-scale data sets indicate that our model can significantly outperform state-of-the-art generation models in terms of response relevance, response diversity, and accuracy of meta-word expression.
The 20 Questions (Q20) game is a well known game which encourages deductive reasoning and creativity. In the game, the answerer first thinks of an object such as a famous person or a kind of animal. Then the questioner tries to guess the object by asking 20 questions. In a Q20 game system, the user is considered as the answerer while the system itself acts as the questioner which requires a good strategy of question selection to figure out the correct object and win the game. However, the optimal policy of question selection is hard to be derived due to the complexity and volatility of the game environment. In this paper, we propose a novel policy-based Reinforcement Learning (RL) method, which enables the questioner agent to learn the optimal policy of question selection through continuous interactions with users. To facilitate training, we also propose to use a reward network to estimate the more informative reward. Compared to previous methods, our RL method is robust to noisy answers and does not rely on the Knowledge Base of objects. Experimental results show that our RL method clearly outperforms an entropy-based engineering system and has competitive performance in a noisy-free simulation environment.