NLP models often face challenges with under-represented languages due to a lack of sufficient training data and language complexities. This can result in inaccurate predictions and a failure to capture the inherent uncertainties within these languages. This paper introduces a new method for modelling uncertainty in under-represented languages by employing deep Bayesian Gaussian Processes. We develop a novel framework that integrates prior knowledge and leverages kernel functions. This helps enable the quantification of uncertainty in predictions to overcome the data limitations in under-represented languages. The efficacy of our approach is validated through various experiments, and the results are benchmarked against existing methods to highlight the enhancements in prediction accuracy and measurement of uncertainty.
Multi-level Hierarchical Classification (MLHC) tackles the challenge of categorizing items within a complex, multi-layered class structure. However, traditional MLHC classifiers often rely on a backbone model with n independent output layers, which tend to ignore the hierarchical relationships between classes. This oversight can lead to inconsistent predictions that violate the underlying taxonomy. Leveraging Large Language Models (LLMs), we propose novel taxonomy-embedded transitional LLM-agnostic framework for multimodality classification. The cornerstone of this advancement is the ability of models to enforce consistency across hierarchical levels. Our evaluations on the MEP-3M dataset - a Multi-modal E-commerce Product dataset with various hierarchical levels- demonstrated a significant performance improvement compared to conventional LLMs structure.
Despite the remarkable performances in various applications, machine learning (ML) models could potentially discriminate. They may result in biasness in decision-making, leading to an impact negatively on individuals and society. Recently, various methods have been developed to mitigate biasness and achieve significant performance. Attention mechanisms are a fundamental component of many state-of-the-art ML models and may potentially impact the fairness of ML models. However, how they explicitly influence fairness has yet to be thoroughly explored. In this paper, we investigate how different attention mechanisms affect the fairness of ML models, focusing on models used in Natural Language Processing (NLP) models. We evaluate the performance of fairness of several models with and without different attention mechanisms on widely used benchmark datasets. Our results indicate that the majority of attention mechanisms that have been assessed can improve the fairness performance of Bidirectional Gated Recurrent Unit (BiGRU) and Bidirectional Long Short-Term Memory (BiLSTM) in all three datasets regarding religious and gender-sensitive groups, however, with varying degrees of trade-offs in accuracy measures. Our findings highlight the possibility of fairness being affected by adopting specific attention mechanisms in machine learning models for certain datasets
This paper presents a new multi-modal dataset for identifying hateful content on social media, consisting of 5,680 text-image pairs collected from Twitter, labeled across two labels. Experimental analysis of the presented dataset has shown that understanding both modalities is essential for detecting these techniques. It is confirmed in our experiments with several state-of-the-art multi-modal models. In future work, we plan to extend the dataset in size. We further plan to develop new multi-modal models tailored explicitly to hate-speech detection, aiming for a deeper understanding of the text and image relation. It would also be interesting to perform experiments in a direction that explores what social entities the given hate speech tweet targets.