Jason Wolfe


2023

pdf bib
ZEROTOP: Zero-Shot Task-Oriented Semantic Parsing using Large Language Models
Dheeraj Mekala | Jason Wolfe | Subhro Roy
Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing

We explore the use of large language models (LLMs) for zero-shot semantic parsing. Semantic parsing involves mapping natural language utterances to task-specific meaning representations. LLMs are generally trained on publicly available text and code and cannot be expected to directly generalize to domain-specific parsing tasks in a zero-shot setting. In this work, we propose ZEROTOP, a zero-shot task-oriented parsing method that decomposes semantic parsing problem into a set of abstractive and extractive question-answering (QA) problems. For each utterance, we prompt the LLM with questions corresponding to its top-level intent and a set of slots and use the LLM generations to construct the target meaning representation. We observe that current LLMs fail to detect unanswerable questions; and as a result, cannot handle questions corresponding to missing slots. We address this by fine-tuning a language model on public QA datasets using synthetic negative samples. Experimental results show that our QA-based decomposition paired with the fine-tuned LLM can zero-shot parse 16% of utterances in the MTOP dataset.

2021

pdf bib
Value-Agnostic Conversational Semantic Parsing
Emmanouil Antonios Platanios | Adam Pauls | Subhro Roy | Yuchen Zhang | Alexander Kyte | Alan Guo | Sam Thomson | Jayant Krishnamurthy | Jason Wolfe | Jacob Andreas | Dan Klein
Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers)

Conversational semantic parsers map user utterances to executable programs given dialogue histories composed of previous utterances, programs, and system responses. Existing parsers typically condition on rich representations of history that include the complete set of values and computations previously discussed. We propose a model that abstracts over values to focus prediction on type- and function-level context. This approach provides a compact encoding of dialogue histories and predicted programs, improving generalization and computational efficiency. Our model incorporates several other components, including an atomic span copy operation and structural enforcement of well-formedness constraints on predicted programs, that are particularly advantageous in the low-data regime. Trained on the SMCalFlow and TreeDST datasets, our model outperforms prior work by 7.3% and 10.6% respectively in terms of absolute accuracy. Trained on only a thousand examples from each dataset, it outperforms strong baselines by 12.4% and 6.4%. These results indicate that simple representations are key to effective generalization in conversational semantic parsing.

2020

pdf bib
Task-Oriented Dialogue as Dataflow Synthesis
Jacob Andreas | John Bufe | David Burkett | Charles Chen | Josh Clausman | Jean Crawford | Kate Crim | Jordan DeLoach | Leah Dorner | Jason Eisner | Hao Fang | Alan Guo | David Hall | Kristin Hayes | Kellie Hill | Diana Ho | Wendy Iwaszuk | Smriti Jha | Dan Klein | Jayant Krishnamurthy | Theo Lanman | Percy Liang | Christopher H. Lin | Ilya Lintsbakh | Andy McGovern | Aleksandr Nisnevich | Adam Pauls | Dmitrij Petters | Brent Read | Dan Roth | Subhro Roy | Jesse Rusak | Beth Short | Div Slomin | Ben Snyder | Stephon Striplin | Yu Su | Zachary Tellman | Sam Thomson | Andrei Vorobev | Izabela Witoszko | Jason Wolfe | Abby Wray | Yuchen Zhang | Alexander Zotov
Transactions of the Association for Computational Linguistics, Volume 8

We describe an approach to task-oriented dialogue in which dialogue state is represented as a dataflow graph. A dialogue agent maps each user utterance to a program that extends this graph. Programs include metacomputation operators for reference and revision that reuse dataflow fragments from previous turns. Our graph-based state enables the expression and manipulation of complex user intents, and explicit metacomputation makes these intents easier for learned models to predict. We introduce a new dataset, SMCalFlow, featuring complex dialogues about events, weather, places, and people. Experiments show that dataflow graphs and metacomputation substantially improve representability and predictability in these natural dialogues. Additional experiments on the MultiWOZ dataset show that our dataflow representation enables an otherwise off-the-shelf sequence-to-sequence model to match the best existing task-specific state tracking model. The SMCalFlow dataset, code for replicating experiments, and a public leaderboard are available at https://www.microsoft.com/en-us/research/project/dataflow-based-dialogue-semantic-machines.