Clinical Decision Support Systems assist medical professionals in providing optimal care for patients.A prominent data source used for creating tasks for such systems is the Medical Information Mart for Intensive Care (MIMIC).MIMIC contains electronic health records (EHR) gathered in a tertiary hospital in the United States.The majority of past work is based on the third version of MIMIC, although the fourth is the most recent version.This new version, not only introduces more data into MIMIC, but also increases the variety of patients.While MIMIC-III is limited to intensive care units, MIMIC-IV also offers EHRs from the emergency department.In this work, we investigate how to adapt previous work to update clinical outcome prediction for MIMIC-IV.We revisit several established tasks, including prediction of diagnoses, procedures, length-of-stay, and also introduce a novel task: patient routing prediction.Furthermore, we quantitatively and qualitatively evaluate all tasks on several bio-medical transformer encoder models.Finally, we provide narratives for future research directions in the clinical outcome prediction domain. We make our source code publicly available to reproduce our experiments, data, and tasks.
Clinical NLP research faces a scarcity of publicly available datasets due to privacy concerns. MIMIC-III marked a significant milestone, enabling substantial progress, and now, with MIMIC-IV, the dataset has expanded significantly, offering a broader scope. In this paper, we focus on the task of predicting clinical outcomes from clinical text. This is crucial in modern healthcare, aiding in preventive care, differential diagnosis, and capacity planning. We introduce a novel clinical outcome prediction dataset derived from MIMIC-IV. Furthermore, we provide initial insights into the performance of models trained on MIMIC-III when applied to our new dataset, with specific attention to potential data drift. We investigate challenges tied to evolving documentation standards and changing codes in the International Classification of Diseases (ICD) taxonomy, such as the transition from ICD-9 to ICD-10. We also explore variations in clinical text across different hospital wards. Our study aims to probe the robustness and generalization of clinical outcome prediction models, contributing to the ongoing advancement of clinical NLP in healthcare.
Clinical phenotyping enables the automatic extraction of clinical conditions from patient records, which can be beneficial to doctors and clinics worldwide. However, current state-of-the-art models are mostly applicable to clinical notes written in English. We therefore investigate cross-lingual knowledge transfer strategies to execute this task for clinics that do not use the English language and have a small amount of in-domain data available. Our results reveal two strategies that outperform the state-of-the-art: Translation-based methods in combination with domain-specific encoders and cross-lingual encoders plus adapters. We find that these strategies perform especially well for classifying rare phenotypes and we advise on which method to prefer in which situation. Our results show that using multilingual data overall improves clinical phenotyping models and can compensate for data sparseness.
The use of deep neural models for diagnosis prediction from clinical text has shown promising results. However, in clinical practice such models must not only be accurate, but provide doctors with interpretable and helpful results. We introduce ProtoPatient, a novel method based on prototypical networks and label-wise attention with both of these abilities. ProtoPatient makes predictions based on parts of the text that are similar to prototypical patients—providing justifications that doctors understand. We evaluate the model on two publicly available clinical datasets and show that it outperforms existing baselines. Quantitative and qualitative evaluations with medical doctors further demonstrate that the model provides valuable explanations for clinical decision support.
Outcome prediction from clinical text can prevent doctors from overlooking possible risks and help hospitals to plan capacities. We simulate patients at admission time, when decision support can be especially valuable, and contribute a novel *admission to discharge* task with four common outcome prediction targets: Diagnoses at discharge, procedures performed, in-hospital mortality and length-of-stay prediction. The ideal system should infer outcomes based on symptoms, pre-conditions and risk factors of a patient. We evaluate the effectiveness of language models to handle this scenario and propose *clinical outcome pre-training* to integrate knowledge about patient outcomes from multiple public sources. We further present a simple method to incorporate ICD code hierarchy into the models. We show that our approach improves performance on the outcome tasks against several baselines. A detailed analysis reveals further strengths of the model, including transferability, but also weaknesses such as handling of vital values and inconsistencies in the underlying data.