Ji Hyun An
Also published as: Ji hyun An
2024
CURE: Context- and Uncertainty-Aware Mental Disorder Detection
Migyeong Kang
|
Goun Choi
|
Hyolim Jeon
|
Ji Hyun An
|
Daejin Choi
|
Jinyoung Han
Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing
As the explainability of mental disorder detection models has become important, symptom-based methods that predict disorders from identified symptoms have been widely utilized. However, since these approaches focused on the presence of symptoms, the context of symptoms can be often ignored, leading to missing important contextual information related to detecting mental disorders. Furthermore, the result of disorder detection can be vulnerable to errors that may occur in identifying symptoms. To address these issues, we propose a novel framework that detects mental disorders by leveraging symptoms and their context while mitigating potential errors in symptom identification. In this way, we propose to use large language models to effectively extract contextual information and introduce an uncertainty-aware decision fusion network that combines predictions of multiple models based on quantified uncertainty values. To evaluate the proposed method, we constructed a new Korean mental health dataset annotated by experts, named KoMOS. Experimental results demonstrate that the proposed model accurately detects mental disorders even in situations where symptom information is incomplete.
Detecting Bipolar Disorder from Misdiagnosed Major Depressive Disorder with Mood-Aware Multi-Task Learning
Daeun Lee
|
Hyolim Jeon
|
Sejung Son
|
Chaewon Park
|
Ji hyun An
|
Seungbae Kim
|
Jinyoung Han
Proceedings of the 2024 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 1: Long Papers)
Bipolar Disorder (BD) is a mental disorder characterized by intense mood swings, from depression to manic states. Individuals with BD are at a higher risk of suicide, but BD is often misdiagnosed as Major Depressive Disorder (MDD) due to shared symptoms, resulting in delays in appropriate treatment and increased suicide risk. While early intervention based on social media data has been explored to uncover latent BD risk, little attention has been paid to detecting BD from those misdiagnosed as MDD. Therefore, this study presents a novel approach for identifying BD risk in individuals initially misdiagnosed with MDD. A unique dataset, BD-Risk, is introduced, incorporating mental disorder types and BD mood levels verified by two clinical experts. The proposed multi-task learning for predicting BD risk and BD mood level outperforms the state-of-the-art baselines. Also, the proposed dynamic mood-aware attention can provide insights into the impact of BD mood on future risk, potentially aiding interventions for at-risk individuals.
Search
Co-authors
- Chaewon Park 1
- Daejin Choi 1
- Daeun Lee 1
- Goun Choi 1
- Hyolim Jeon 2
- show all...