Jialong Wu


2025

pdf bib
SEED: Accelerating Reasoning Tree Construction via Scheduled Speculative Decoding
Zhenglin Wang | Jialong Wu | Yilong Lai | Congzhi Zhang | Deyu Zhou
Proceedings of the 31st International Conference on Computational Linguistics

Large Language Models (LLMs) demonstrate remarkable emergent abilities across various tasks, yet fall short of complex reasoning and planning tasks. The tree-search-based reasoning methods address this by encouraging the exploration of intermediate steps, surpassing the capabilities of chain-of-thought prompting. However, significant inference latency is introduced due to the systematic exploration and evaluation of multiple thought paths. This paper introduces SEED, a novel and efficient inference framework to improve both runtime speed and GPU memory management concurrently. Based on a scheduled speculative execution, SEED efficiently handles multiple iterations for thought generation and state evaluation, leveraging a rounds-scheduled strategy to manage draft model dispatching. Extensive experimental evaluations on three reasoning datasets demonstrate the superior speedup performance of SEED.

pdf bib
AdaCQR: Enhancing Query Reformulation for Conversational Search via Sparse and Dense Retrieval Alignment
Yilong Lai | Jialong Wu | Congzhi Zhang | Haowen Sun | Deyu Zhou
Proceedings of the 31st International Conference on Computational Linguistics

Conversational Query Reformulation (CQR) has significantly advanced in addressing the challenges of conversational search, particularly those stemming from the latent user intent and the need for historical context. Recent works aimed to boost the performance of CQR through alignment. However, they are designed for one specific retrieval system, which potentially results in sub-optimal generalization. To overcome this limitation, we present a novel framework AdaCQR. By aligning reformulation models with both term-based and semantic-based retrieval systems, AdaCQR enhances the generalizability of information-seeking queries among diverse retrieval environments through a two-stage training strategy. Moreover, two effective approaches are proposed to obtain superior labels and diverse input candidates, boosting the efficiency and robustness of the framework. Experimental results on the TopiOCQA, QReCC and TREC CAsT datasets demonstrate that AdaCQR outperforms the existing methods in a more efficient framework, offering both quantitative and qualitative improvements in conversational query reformulation.

2024

pdf bib
DINER: Debiasing Aspect-based Sentiment Analysis with Multi-variable Causal Inference
Jialong Wu | Linhai Zhang | Deyu Zhou | Guoqiang Xu
Findings of the Association for Computational Linguistics: ACL 2024

Though notable progress has been made, neural-based aspect-based sentiment analysis (ABSA) models are prone to learn spurious correlations from annotation biases, resulting in poor robustness on adversarial data transformations. Among the debiasing solutions, causal inference-based methods have attracted much research attention, which can be mainly categorized into causal intervention methods and counterfactual reasoning methods. However, most of the present debiasing methods focus on single-variable causal inference, which is not suitable for ABSA with two input variables (the target aspect and the review). In this paper, we propose a novel framework based on multi-variable causal inference for debiasing ABSA. In this framework, different types of biases are tackled based on different causal intervention methods. For the review branch, the bias is modeled as indirect confounding from context, where backdoor adjustment intervention is employed for debiasing. For the aspect branch, the bias is described as a direct correlation with labels, where counterfactual reasoning is adopted for debiasing. Extensive experiments demonstrate the effectiveness of the proposed method compared to various baselines on the two widely used real-world aspect robustness test set datasets.

pdf bib
STAR: Constraint LoRA with Dynamic Active Learning for Data-Efficient Fine-Tuning of Large Language Models
Linhai Zhang | Jialong Wu | Deyu Zhou | Guoqiang Xu
Findings of the Association for Computational Linguistics: ACL 2024

Though Large Language Models (LLMs) have demonstrated the powerful capabilities of few-shot learning through prompting methods, supervised training is still necessary for complex reasoning tasks. Because of their extensive parameters and memory consumption, both Parameter-Efficient Fine-Tuning (PEFT) methods and Memory-Efficient Fine-Tuning methods have been proposed for LLMs. Nevertheless, the issue of large annotated data consumption, the aim of Data-Efficient Fine-Tuning, remains unexplored. One obvious way is to combine the PEFT method with active learning. However, the experimental results show that such a combination is not trivial and yields inferior results. Through probe experiments, such observation might be explained by two main reasons: uncertainty gap and poor model calibration. Therefore, in this paper, we propose a novel approach to effectively integrate uncertainty-based active learning and LoRA. Specifically, for the uncertainty gap, we introduce a dynamic uncertainty measurement that combines the uncertainty of the base model and the uncertainty of the full model during the iteration of active learning. For poor model calibration, we incorporate the regularization method during LoRA training to keep the model from being over-confident, and the Monte-Carlo dropout mechanism is employed to enhance the uncertainty estimation. Experimental results show that the proposed approach outperforms existing baseline models on three complex reasoning tasks.