Jian Dai
2020
Knowledge Association with Hyperbolic Knowledge Graph Embeddings
Zequn Sun
|
Muhao Chen
|
Wei Hu
|
Chengming Wang
|
Jian Dai
|
Wei Zhang
Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)
Capturing associations for knowledge graphs (KGs) through entity alignment, entity type inference and other related tasks benefits NLP applications with comprehensive knowledge representations. Recent related methods built on Euclidean embeddings are challenged by the hierarchical structures and different scales of KGs. They also depend on high embedding dimensions to realize enough expressiveness. Differently, we explore with low-dimensional hyperbolic embeddings for knowledge association. We propose a hyperbolic relational graph neural network for KG embedding and capture knowledge associations with a hyperbolic transformation. Extensive experiments on entity alignment and type inference demonstrate the effectiveness and efficiency of our method.