Jian Tang


2024

pdf bib
AI for Science in the Era of Large Language Models
Zhenyu Bi | Minghao Xu | Jian Tang | Xuan Wang
Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing: Tutorial Abstracts

The capabilities of AI in the realm of science span a wide spectrum, from the atomic level, where it solves partial differential equations for quantum systems, to the molecular level, predicting chemical or protein structures, and even extending to societal predictions like infectious disease outbreaks. Recent advancements in large language models (LLMs), exemplified by models like ChatGPT, have showcased significant prowess in tasks involving natural language, such as translating languages, constructing chatbots, and answering questions. When we consider scientific data, we notice a resemblance to natural language in terms of sequences – scientific literature and health records presented as text, bio-omics data arranged in sequences, or sensor data like brain signals. The question arises: Can we harness the potential of these recent LLMs to drive scientific progress? In this tutorial, we will explore the application of large language models to three crucial categories of scientific data: 1) textual data, 2) biomedical sequences, and 3) brain signals. Furthermore, we will delve into LLMs’ challenges in scientific research, including ensuring trustworthiness, achieving personalization, and adapting to multi-modal data representation.

2022

pdf bib
Subgraph Retrieval Enhanced Model for Multi-hop Knowledge Base Question Answering
Jing Zhang | Xiaokang Zhang | Jifan Yu | Jian Tang | Jie Tang | Cuiping Li | Hong Chen
Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Recent works on knowledge base question answering (KBQA) retrieve subgraphs for easier reasoning. The desired subgraph is crucial as a small one may exclude the answer but a large one might introduce more noises. However, the existing retrieval is either heuristic or interwoven with the reasoning, causing reasoning on the partial subgraphs, which increases the reasoning bias when the intermediate supervision is missing. This paper proposes a trainable subgraph retriever (SR) decoupled from the subsequent reasoning process, which enables a plug-and-play framework to enhance any subgraph-oriented KBQA model. Extensive experiments demonstrate SR achieves significantly better retrieval and QA performance than existing retrieval methods. Via weakly supervised pre-training as well as the end-to-end fine-tuning, SR achieves new state-of-the-art performance when combined with NSM (He et al., 2021), a subgraph-oriented reasoner, for embedding-based KBQA methods. Codes and datasets are available online (https://github.com/RUCKBReasoning/SubgraphRetrievalKBQA)

2021

pdf bib
Feature-level Incongruence Reduction for Multimodal Translation
Zhifeng Li | Yu Hong | Yuchen Pan | Jian Tang | Jianmin Yao | Guodong Zhou
Proceedings of the Second Workshop on Advances in Language and Vision Research

Caption translation aims to translate image annotations (captions for short). Recently, Multimodal Neural Machine Translation (MNMT) has been explored as the essential solution. Besides of linguistic features in captions, MNMT allows visual(image) features to be used. The integration of multimodal features reinforces the semantic representation and considerably improves translation performance. However, MNMT suffers from the incongruence between visual and linguistic features. To overcome the problem, we propose to extend MNMT architecture with a harmonization network, which harmonizes multimodal features(linguistic and visual features)by unidirectional modal space conversion. It enables multimodal translation to be carried out in a seemingly monomodal translation pipeline. We experiment on the golden Multi30k-16 and 17. Experimental results show that, compared to the baseline,the proposed method yields the improvements of 2.2% BLEU for the scenario of translating English captions into German (En→De) at best,7.6% for the case of English-to-French translation(En→Fr) and 1.5% for English-to-Czech(En→Cz). The utilization of harmonization network leads to the competitive performance to the-state-of-the-art.

pdf bib
KEPLER: A Unified Model for Knowledge Embedding and Pre-trained Language Representation
Xiaozhi Wang | Tianyu Gao | Zhaocheng Zhu | Zhengyan Zhang | Zhiyuan Liu | Juanzi Li | Jian Tang
Transactions of the Association for Computational Linguistics, Volume 9

Pre-trained language representation models (PLMs) cannot well capture factual knowledge from text. In contrast, knowledge embedding (KE) methods can effectively represent the relational facts in knowledge graphs (KGs) with informative entity embeddings, but conventional KE models cannot take full advantage of the abundant textual information. In this paper, we propose a unified model for Knowledge Embedding and Pre-trained LanguagERepresentation (KEPLER), which can not only better integrate factual knowledge into PLMs but also produce effective text-enhanced KE with the strong PLMs. In KEPLER, we encode textual entity descriptions with a PLM as their embeddings, and then jointly optimize the KE and language modeling objectives. Experimental results show that KEPLER achieves state-of-the-art performances on various NLP tasks, and also works remarkably well as an inductive KE model on KG link prediction. Furthermore, for pre-training and evaluating KEPLER, we construct Wikidata5M1 , a large-scale KG dataset with aligned entity descriptions, and benchmark state-of-the-art KE methods on it. It shall serve as a new KE benchmark and facilitate the research on large KG, inductive KE, and KG with text. The source code can be obtained from https://github.com/THU-KEG/KEPLER.