Jianxin Wang


2024

pdf bib
Multi-modal Concept Alignment Pre-training for Generative Medical Visual Question Answering
Quan Yan | Junwen Duan | Jianxin Wang
Findings of the Association for Computational Linguistics: ACL 2024

Medical Visual Question Answering (Med-VQA) seeks to accurately respond to queries regarding medical images, a task particularly challenging for open-ended questions. This study unveils the Multi-modal Concept Alignment Pre-training (MMCAP) approach for generative Med-VQA, leveraging a knowledge graph sourced from medical image-caption datasets and the Unified Medical Language System. MMCAP advances the fusion of visual and textual medical knowledge via a graph attention network and a transformer decoder. Additionally, it incorporates a Type Conditional Prompt in the fine-tuning phase, markedly boosting the accuracy and relevance of answers to open-ended questions. Our tests on benchmark datasets illustrate MMCAP’s superiority over existing methods, demonstrating its high efficiency in data-limited settings and effective knowledge-image alignment capability.

2023

pdf bib
CDA: A Contrastive Data Augmentation Method for Alzheimer’s Disease Detection
Junwen Duan | Fangyuan Wei | Jin Liu | Hongdong Li | Tianming Liu | Jianxin Wang
Findings of the Association for Computational Linguistics: ACL 2023

Alzheimer’s Disease (AD) is a neurodegenerative disorder that significantly impacts a patient’s ability to communicate and organize language. Traditional methods for detecting AD, such as physical screening or neurological testing, can be challenging and time-consuming. Recent research has explored the use of deep learning techniques to distinguish AD patients from non-AD patients by analysing the spontaneous speech. These models, however, are limited by the availability of data. To address this, we propose a novel contrastive data augmentation method, which simulates the cognitive impairment of a patient by randomly deleting a proportion of text from the transcript to create negative samples. The corrupted samples are expected to be in worse conditions than the original by a margin. Experimental results on the benchmark ADReSS Challenge dataset demonstrate that our model achieves the best performance among language-based models.