Jiaqi Zeng


2024

pdf bib
GPT vs RETRO: Exploring the Intersection of Retrieval and Parameter-Efficient Fine-Tuning
Aleksander Ficek | Jiaqi Zeng | Oleksii Kuchaiev
Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing

Parameter-Efficient Fine-Tuning (PEFT) and Retrieval-Augmented Generation (RAG) have become popular methods for adapting large language models while minimizing compute requirements. In this paper, we apply PEFT methods (P-tuning, Adapters, and LoRA) to a modified Retrieval-Enhanced Transformer (RETRO) and a baseline GPT model across several sizes, ranging from 823 million to 48 billion parameters. We show that RETRO models outperform GPT models in zero-shot settings due to their unique pre-training process but GPT models have higher performance potential with PEFT. Additionally, our study indicates that 8B parameter models strike an optimal balance between cost and performance and P-tuning lags behind other PEFT techniques. We further provide a comparative analysis of between applying PEFT to Instruction-tuned RETRO model and base RETRO model. This work presents the first comprehensive comparison of various PEFT methods integrated with RAG, applied to both GPT and RETRO models, highlighting their relative performance.

pdf bib
CantTalkAboutThis: Aligning Language Models to Stay on Topic in Dialogues
Makesh Narsimhan Sreedhar | Traian Rebedea | Shaona Ghosh | Jiaqi Zeng | Christopher Parisien
Findings of the Association for Computational Linguistics: EMNLP 2024

Recent advancements in instruction-tuning datasets have predominantly focused on specific tasks like mathematical or logical reasoning. There has been a notable gap in data designed for aligning language models to maintain topic relevance in conversations - a critical aspect for deploying chatbots to production. We introduce the CantTalkAboutThis dataset to help language models remain focused on the subject at hand during task-oriented interactions. It consists of synthetic dialogues on a wide range of conversation topics from different domains. These dialogues are interspersed with distractor turns that intentionally divert the chatbot from the predefined topic. Fine-tuning language models on this dataset helps make them resilient to deviating from the assigned role and improves their ability to maintain topical coherence compared to general-purpose instruction-tuned LLMs like gpt-4-turbo and Mixtral-Instruct. Additionally, preliminary observations suggest that training models on this dataset also enhance their performance on fine-grained instruction following tasks, including safety alignment.

pdf bib
HelpSteer: Multi-attribute Helpfulness Dataset for SteerLM
Zhilin Wang | Yi Dong | Jiaqi Zeng | Virginia Adams | Makesh Narsimhan Sreedhar | Daniel Egert | Olivier Delalleau | Jane Scowcroft | Neel Kant | Aidan Swope | Oleksii Kuchaiev
Proceedings of the 2024 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 1: Long Papers)

Existing open-source helpfulness preference datasets do not specify what makes some responses more helpful and others less so. Models trained on these datasets can incidentally learn to model dataset artifacts (e.g. preferring longer but unhelpful responses only due to their length). To alleviate this problem, we collect HelpSteer, a multi-attribute helpfulness dataset annotated for the various aspects that make responses helpful. Specifically, our 37k-sample dataset has annotations for correctness, coherence, complexity, and verbosity in addition to overall helpfulness of responses. Training Llama 2 70B using the HelpSteer dataset with SteerLM technique produces a model that scores 7.54 on MT Bench, which is currently the highest score for open models that do not require training data from more powerful models (e.g. GPT-4). We release this dataset with CC-BY-4.0 license at https://huggingface.co/datasets/nvidia/HelpSteer

2021

pdf bib
Uncovering Main Causalities for Long-tailed Information Extraction
Guoshun Nan | Jiaqi Zeng | Rui Qiao | Zhijiang Guo | Wei Lu
Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing

Information Extraction (IE) aims to extract structural information from unstructured texts. In practice, long-tailed distributions caused by the selection bias of a dataset may lead to incorrect correlations, also known as spurious correlations, between entities and labels in the conventional likelihood models. This motivates us to propose counterfactual IE (CFIE), a novel framework that aims to uncover the main causalities behind data in the view of causal inference. Specifically, 1) we first introduce a unified structural causal model (SCM) for various IE tasks, describing the relationships among variables; 2) with our SCM, we then generate counterfactuals based on an explicit language structure to better calculate the direct causal effect during the inference stage; 3) we further propose a novel debiasing approach to yield more robust predictions. Experiments on three IE tasks across five public datasets show the effectiveness of our CFIE model in mitigating the spurious correlation issues.

2020

pdf bib
MedDialog: Large-scale Medical Dialogue Datasets
Guangtao Zeng | Wenmian Yang | Zeqian Ju | Yue Yang | Sicheng Wang | Ruisi Zhang | Meng Zhou | Jiaqi Zeng | Xiangyu Dong | Ruoyu Zhang | Hongchao Fang | Penghui Zhu | Shu Chen | Pengtao Xie
Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)

Medical dialogue systems are promising in assisting in telemedicine to increase access to healthcare services, improve the quality of patient care, and reduce medical costs. To facilitate the research and development of medical dialogue systems, we build large-scale medical dialogue datasets – MedDialog, which contain 1) a Chinese dataset with 3.4 million conversations between patients and doctors, 11.3 million utterances, 660.2 million tokens, covering 172 specialties of diseases, and 2) an English dataset with 0.26 million conversations, 0.51 million utterances, 44.53 million tokens, covering 96 specialties of diseases. To our best knowledge, MedDialog is the largest medical dialogue dataset to date. We pretrain several dialogue generation models on the Chinese MedDialog dataset, including Transformer, GPT, BERT-GPT, and compare their performance. It is shown that models trained on MedDialog are able to generate clinically correct and doctor-like medical dialogues. We also study the transferability of models trained on MedDialog to low-resource medical dialogue generation tasks. It is shown that via transfer learning which finetunes the models pretrained on MedDialog, the performance on medical dialogue generation tasks with small datasets can be greatly improved, as shown in human evaluation and automatic evaluation. The datasets and code are available at https://github.com/UCSD-AI4H/Medical-Dialogue-System