Jiasheng Gu
2023
Robustness of Learning from Task Instructions
Jiasheng Gu
|
Hongyu Zhao
|
Hanzi Xu
|
Liangyu Nie
|
Hongyuan Mei
|
Wenpeng Yin
Findings of the Association for Computational Linguistics: ACL 2023
Traditional supervised learning mostly works on individual tasks and requires training on a large set of task-specific examples. This paradigm seriously hinders the development of task generalization since preparing a task-specific example set is costly. To build a system that can quickly and easily generalize to new tasks, task instructions have been adopted as an emerging trend of supervision recently. These instructions give the model the definition of the task and allow the model to output the appropriate answer based on the instructions and inputs. However, task instructions are often expressed in different forms, which can be interpreted from two threads: first, some instructions are short sentences and are pretrained language model (PLM) oriented, such as prompts, while other instructions are paragraphs and are human-oriented, such as those in Amazon MTurk; second, different end-users very likely explain the same task with instructions of different textual expressions. A robust system for task generalization should be able to handle any new tasks regardless of the variability of instructions. However, the system robustness in dealing with instruction-driven task generalization is still unexplored. This work investigates the system robustness when the instructions of new tasks are (i) manipulated, (ii) paraphrased, or (iii) from different levels of conciseness. To our knowledge, this is the first work that systematically studies how robust a PLM is when it is supervised by instructions with different factors of variability.
Co-evolving data-driven and NLU-driven Synthesizers for Generating Code in Domain Growth and Data Scarcity
Jiasheng Gu
|
Zifan Nan
|
Zhiyuan Peng
|
Xipeng Shen
|
Dongkuan Xu
Proceedings of the 2nd Workshop on Pattern-based Approaches to NLP in the Age of Deep Learning
Natural language programming automatically generates code based on a user’s text query. Recent solutions are either data-driven or natural language understanding (NLU)-driven. However, the data-driven synthesizer requires a large number of query-code pairs for training, which hinders its application to low-resource programming languages with growing domains whose functionality and grammar can be actively updated. NLU-driven synthesizers solve this problem, but their code generation is slow and their performance rapidly saturates in the presence of ever-increasing data. In this paper, we propose a circular training framework, Colead, which co-evolves both the data-driven synthesizer and the NLU-driven synthesizer to achieve high-quality code generation in the presence of data scarcity and domain growth. The NLU-driven synthesizer generates query-code pairs to update the data-driven synthesizer, which shares a part of its updated model to improve the NLU-driven synthesizers, enabling the co-evolution of both. Experiments show that Colead gives better results than the baselines in the presence of domain growth and data scarcity, and Colead consistently improves the performance of both data-driven and NLU-driven synthesizers over the co-evolvement.
Search
Fix data
Co-authors
- Hongyuan Mei 1
- Zifan Nan 1
- Liangyu Nie 1
- Zhiyuan Peng 1
- Xipeng Shen 1
- show all...