Jiehang Zeng


2023

pdf bib
Certified Robustness to Text Adversarial Attacks by Randomized [MASK]
Jiehang Zeng | Jianhan Xu | Xiaoqing Zheng | Xuanjing Huang
Computational Linguistics, Volume 49, Issue 2 - June 2023

Very recently, few certified defense methods have been developed to provably guarantee the robustness of a text classifier to adversarial synonym substitutions. However, all the existing certified defense methods assume that the defenders have been informed of how the adversaries generate synonyms, which is not a realistic scenario. In this study, we propose a certifiably robust defense method by randomly masking a certain proportion of the words in an input text, in which the above unrealistic assumption is no longer necessary. The proposed method can defend against not only word substitution-based attacks, but also character-level perturbations. We can certify the classifications of over 50% of texts to be robust to any perturbation of five words on AGNEWS, and two words on SST2 dataset. The experimental results show that our randomized smoothing method significantly outperforms recently proposed defense methods across multiple datasets under different attack algorithms.

2021

pdf bib
Backdoor Attacks on Pre-trained Models by Layerwise Weight Poisoning
Linyang Li | Demin Song | Xiaonan Li | Jiehang Zeng | Ruotian Ma | Xipeng Qiu
Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing

Pre-Trained Models have been widely applied and recently proved vulnerable under backdoor attacks: the released pre-trained weights can be maliciously poisoned with certain triggers. When the triggers are activated, even the fine-tuned model will predict pre-defined labels, causing a security threat. These backdoors generated by the poisoning methods can be erased by changing hyper-parameters during fine-tuning or detected by finding the triggers. In this paper, we propose a stronger weight-poisoning attack method that introduces a layerwise weight poisoning strategy to plant deeper backdoors; we also introduce a combinatorial trigger that cannot be easily detected. The experiments on text classification tasks show that previous defense methods cannot resist our weight-poisoning method, which indicates that our method can be widely applied and may provide hints for future model robustness studies.

pdf bib
Searching for an Effective Defender: Benchmarking Defense against Adversarial Word Substitution
Zongyi Li | Jianhan Xu | Jiehang Zeng | Linyang Li | Xiaoqing Zheng | Qi Zhang | Kai-Wei Chang | Cho-Jui Hsieh
Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing

Recent studies have shown that deep neural network-based models are vulnerable to intentionally crafted adversarial examples, and various methods have been proposed to defend against adversarial word-substitution attacks for neural NLP models. However, there is a lack of systematic study on comparing different defense approaches under the same attacking setting. In this paper, we seek to fill the gap of systematic studies through comprehensive researches on understanding the behavior of neural text classifiers trained by various defense methods under representative adversarial attacks. In addition, we propose an effective method to further improve the robustness of neural text classifiers against such attacks, and achieved the highest accuracy on both clean and adversarial examples on AGNEWS and IMDB datasets by a significant margin. We hope this study could provide useful clues for future research on text adversarial defense. Codes are available at https://github.com/RockyLzy/TextDefender.

2020

pdf bib
Evaluating and Enhancing the Robustness of Neural Network-based Dependency Parsing Models with Adversarial Examples
Xiaoqing Zheng | Jiehang Zeng | Yi Zhou | Cho-Jui Hsieh | Minhao Cheng | Xuanjing Huang
Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics

Despite achieving prominent performance on many important tasks, it has been reported that neural networks are vulnerable to adversarial examples. Previously studies along this line mainly focused on semantic tasks such as sentiment analysis, question answering and reading comprehension. In this study, we show that adversarial examples also exist in dependency parsing: we propose two approaches to study where and how parsers make mistakes by searching over perturbations to existing texts at sentence and phrase levels, and design algorithms to construct such examples in both of the black-box and white-box settings. Our experiments with one of state-of-the-art parsers on the English Penn Treebank (PTB) show that up to 77% of input examples admit adversarial perturbations, and we also show that the robustness of parsing models can be improved by crafting high-quality adversaries and including them in the training stage, while suffering little to no performance drop on the clean input data.