Jillian Fisher


2024

pdf bib
JAMDEC: Unsupervised Authorship Obfuscation using Constrained Decoding over Small Language Models
Jillian Fisher | Ximing Lu | Jaehun Jung | Liwei Jiang | Zaid Harchaoui | Yejin Choi
Proceedings of the 2024 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 1: Long Papers)

The permanence of online content combined with the enhanced authorship identification techniques calls for stronger computational methods to protect the identity and privacy of online authorship when needed, e.g., blind reviews for scientific papers, anonymous online reviews, or anonymous interactions in the mental health forums. In this paper, we propose an unsupervised inference-time approach to authorship obfuscation to address the unique challenges of authorship obfuscation: lack of supervision data for diverse authorship and domains, and the need for a sufficient level of revision beyond simple paraphrasing to obfuscate the authorship, all the while preserving the original content and fluency.We introduce JAMDEC, a user-controlled, inference-time algorithm for authorship obfuscation that can be in principle applied to any text and authorship. Our approach builds on small language models such as GPT2-XL in order to help avoid disclosing the original content to proprietary LLM’s APIs, while also reducing the performance gap between small and large language models via algorithmic enhancement. The key idea behind our approach is to boost the creative power of smaller language models through constrained decoding, while also allowing for user-specified controls and flexibility. Experimental results demonstrate that our approach based on GPT2-XL outperforms previous state-of-the-art methods based on comparably small models, while performing competitively against GPT3.5 175B, a propriety model that is two orders of magnitudes larger.

pdf bib
Impossible Distillation for Paraphrasing and Summarization: How to Make High-quality Lemonade out of Small, Low-quality Model
Jaehun Jung | Peter West | Liwei Jiang | Faeze Brahman | Ximing Lu | Jillian Fisher | Taylor Sorensen | Yejin Choi
Proceedings of the 2024 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 1: Long Papers)

We present Impossible Distillation, a novel framework for paraphrasing and sentence summarization, that distills a high-quality dataset and model from a low-quality teacher that itself cannot perform these tasks. Unlike prior works that rely on an extreme-scale teacher model (e.g., GPT3) or task-specific architecture, we hypothesize and verify the paraphrastic proximity intrinsic to pre-trained LMs (e.g., GPT2), where paraphrases occupy a proximal subspace in the LM distribution. By identifying and distilling generations from these subspaces, Impossible Distillation produces a high-quality dataset and model even from GPT2-scale LMs. We evaluate our method on multiple benchmarks spanning unconstrained / syntax-controlled paraphrase generation and sentence summarization. Our model with 770M parameters consistently outperforms strong baselines, including models distilled from ChatGPT, and sometimes, even ChatGPT itself. Also, we find that our distilled dataset from 1.5B LMs exhibits higher diversity and fidelity than up to 13 times larger datasets.

2023

pdf bib
Inference-Time Policy Adapters (IPA): Tailoring Extreme-Scale LMs without Fine-tuning
Ximing Lu | Faeze Brahman | Peter West | Jaehun Jung | Khyathi Chandu | Abhilasha Ravichander | Prithviraj Ammanabrolu | Liwei Jiang | Sahana Ramnath | Nouha Dziri | Jillian Fisher | Bill Lin | Skyler Hallinan | Lianhui Qin | Xiang Ren | Sean Welleck | Yejin Choi
Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing

While extreme-scale language models have demonstrated exceptional performance on a variety of language tasks, the degree of control over these language models through pure prompting can often be limited. Directly fine-tuning such language models can be effective for tailoring them, but it can be either extremely costly (e.g., GPT-3) or not even feasible for the broader community (e.g., GPT-4). We propose Inference-time Policy Adapters (IPA), which efficiently tailors a language model such as GPT-3 without fine-tuning it. IPA guides a large base model during decoding time through a lightweight policy adapter trained to optimize an arbitrary user objective with reinforcement learning. On five challenging text generation tasks, such as toxicity reduction and lexically constrained generation, IPA consistently brings significant improvements over off-the-shelf language models. It outperforms competitive baseline methods, sometimes even including expensive fine-tuning. In particular, tailoring GPT-2 with IPA can outperform GPT-3, while tailoring GPT-3 with IPA brings a major performance boost over GPT-3 (and sometimes even over GPT-4). Our promising results highlight the potential of IPA as a lightweight alternative to tailoring extreme-scale language models.