Jing Luo
2024
API Is Enough: Conformal Prediction for Large Language Models Without Logit-Access
Jiayuan Su
|
Jing Luo
|
Hongwei Wang
|
Lu Cheng
Findings of the Association for Computational Linguistics: EMNLP 2024
This study aims to address the pervasive challenge of quantifying uncertainty in large language models (LLMs) with black-box API access. Conformal Prediction (CP), known for its model-agnostic and distribution-free features, is a desired approach for various LLMs and data distributions. However, existing CP methods for LLMs typically assume access to the logits, which are unavailable for some API-only LLMs. In addition, logits are known to be miscalibrated, potentially leading to degraded CP performance. To tackle these challenges, we introduce a novel CP method that (1) is tailored for API-only LLMs without logit-access; (2) minimizes the size of prediction sets; and (3) ensures a statistical guarantee of the user-defined coverage. The core idea of this approach is to formulate nonconformity measures using both coarse-grained (i.e., sample frequency) and fine-grained uncertainty notions (e.g., semantic similarity). Experimental results on both close-ended and open-ended Question Answering tasks show our approach can mostly outperform the logit-based CP baselines.
2023
How to Enhance Causal Discrimination of Utterances: A Case on Affective Reasoning
Hang Chen
|
Xinyu Yang
|
Jing Luo
|
Wenjing Zhu
Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing
Our investigation into the Affective Reasoning in Conversation (ARC) task highlights the challenge of causal discrimination. Almost all existing models, including large language models (LLMs), excel at capturing semantic correlations within utterance embeddings but fall short in determining the specific causal relationships. To overcome this limitation, we propose the incorporation of i.i.d. noise terms into the conversation process, thereby constructing a structural causal model (SCM). It explores how distinct causal relationships of fitted embeddings can be discerned through independent conditions. To facilitate the implementation of deep learning, we introduce the cogn frameworks to handle unstructured conversation data, and employ an autoencoder architecture to regard the unobservable noise as learnable “implicit causes.” Moreover, we curate a synthetic dataset that includes i.i.d. noise. Through comprehensive experiments, we validate the effectiveness and interpretability of our approach. Our code is available in https://github.com/Zodiark-ch/mater-of-our-EMNLP2023-paper.