Jingxiang Cao
2021
Lexicon-Based Graph Convolutional Network for Chinese Word Segmentation
Kaiyu Huang
|
Hao Yu
|
Junpeng Liu
|
Wei Liu
|
Jingxiang Cao
|
Degen Huang
Findings of the Association for Computational Linguistics: EMNLP 2021
Precise information of word boundary can alleviate the problem of lexical ambiguity to improve the performance of natural language processing (NLP) tasks. Thus, Chinese word segmentation (CWS) is a fundamental task in NLP. Due to the development of pre-trained language models (PLM), pre-trained knowledge can help neural methods solve the main problems of the CWS in significant measure. Existing methods have already achieved high performance on several benchmarks (e.g., Bakeoff-2005). However, recent outstanding studies are limited by the small-scale annotated corpus. To further improve the performance of CWS methods based on fine-tuning the PLMs, we propose a novel neural framework, LBGCN, which incorporates a lexicon-based graph convolutional network into the Transformer encoder. Experimental results on five benchmarks and four cross-domain datasets show the lexicon-based graph convolutional network successfully captures the information of candidate words and helps to improve performance on the benchmarks (Bakeoff-2005 and CTB6) and the cross-domain datasets (SIGHAN-2010). Further experiments and analyses demonstrate that our proposed framework effectively models the lexicon to enhance the ability of basic neural frameworks and strengthens the robustness in the cross-domain scenario.
2020
Context-Aware Word Segmentation for Chinese Real-World Discourse
Kaiyu Huang
|
Junpeng Liu
|
Jingxiang Cao
|
Degen Huang
Proceedings of the Second International Workshop of Discourse Processing
Previous neural approaches achieve significant progress for Chinese word segmentation (CWS) as a sentence-level task, but it suffers from limitations on real-world scenario. In this paper, we address this issue with a context-aware method and optimize the solution at document-level. This paper proposes a three-step strategy to improve the performance for discourse CWS. First, the method utilizes an auxiliary segmenter to remedy the limitation on pre-segmenter. Then the context-aware algorithm computes the confidence of each split. The maximum probability path is reconstructed via this algorithm. Besides, in order to evaluate the performance in discourse, we build a new benchmark consisting of the latest news and Chinese medical articles. Extensive experiments on this benchmark show that our proposed method achieves a competitive performance on a document-level real-world scenario for CWS.
Search