Junchao Wu
2025
Who Wrote This? The Key to Zero-Shot LLM-Generated Text Detection Is GECScore
Junchao Wu
|
Runzhe Zhan
|
Derek F. Wong
|
Shu Yang
|
Xuebo Liu
|
Lidia S. Chao
|
Min Zhang
Proceedings of the 31st International Conference on Computational Linguistics
The efficacy of detectors for texts generated by large language models (LLMs) substantially depends on the availability of large-scale training data. However, white-box zero-shot detectors, which require no such data, are limited by the accessibility of the source model of the LLM-generated text. In this paper, we propose a simple yet effective black-box zero-shot detection approach based on the observation that, from the perspective of LLMs, human-written texts typically contain more grammatical errors than LLM-generated texts. This approach involves calculating the Grammar Error Correction Score (GECScore) for the given text to differentiate between human-written and LLM-generated text. Experimental results show that our method outperforms current state-of-the-art (SOTA) zero-shot and supervised methods, achieving an average AUROC of 98.62% across XSum and Writing Prompts dataset. Additionally, our approach demonstrates strong reliability in the wild, exhibiting robust generalization and resistance to paraphrasing attacks. Data and code are available at: https://github.com/NLP2CT/GECScore.
2023
Human-in-the-loop Machine Translation with Large Language Model
Xinyi Yang
|
Runzhe Zhan
|
Derek F. Wong
|
Junchao Wu
|
Lidia S. Chao
Proceedings of Machine Translation Summit XIX, Vol. 2: Users Track
The large language model (LLM) has garnered significant attention due to its in-context learning mechanisms and emergent capabilities. The research community has conducted several pilot studies to apply LLMs to machine translation tasks and evaluate their performance from diverse perspectives. However, previous research has primarily focused on the LLM itself and has not explored human intervention in the inference process of LLM. The characteristics of LLM, such as in-context learning and prompt engineering, closely mirror human cognitive abilities in language tasks, offering an intuitive solution for human-in-the-loop generation. In this study, we propose a human-in-the-loop pipeline that guides LLMs to produce customized outputs with revision instructions. The pipeline initiates by prompting the LLM to produce a draft translation, followed by the utilization of automatic retrieval or human feedback as supervision signals to enhance the LLM’s translation through in-context learning. The human-machine interactions generated in this pipeline are also stored in an external database to expand the in-context retrieval database, enabling us to leverage human supervision in an offline setting. We evaluate the proposed pipeline using the GPT-3.5-turbo API on five domain-specific benchmarks for German-English translation. The results demonstrate the effectiveness of the pipeline in tailoring in-domain translations and improving translation performance compared to direct translation instructions. Additionally, we discuss the experimental results from the following perspectives: 1) the effectiveness of different in-context retrieval methods; 2) the construction of a retrieval database under low-resource scenarios; 3) the observed differences across selected domains; 4) the quantitative analysis of sentence-level and word-level statistics; and 5) the qualitative analysis of representative translation cases.
Search
Fix data
Co-authors
- Lidia S. Chao 2
- Derek F. Wong (黄辉) 2
- Runzhe Zhan (詹润哲) 2
- Xuebo Liu 1
- Xinyi Yang 1
- show all...