Junjie Wu


2025

pdf bib
LaERC-S: Improving LLM-based Emotion Recognition in Conversation with Speaker Characteristics
Yumeng Fu | Junjie Wu | Zhongjie Wang | Meishan Zhang | Lili Shan | Yulin Wu | Bingquan Liu
Proceedings of the 31st International Conference on Computational Linguistics

Emotion recognition in conversation (ERC), the task of discerning human emotions for each utterance within a conversation, has garnered significant attention in human-computer interaction systems. Previous ERC studies focus on speaker-specific information that predominantly stems from relationships among utterances, which lacks sufficient information around conversations. Recent research in ERC has sought to exploit pre-trained large language models (LLMs) with speaker modelling to comprehend emotional states. Although these methods have achieved the encouraging results, the extracted speaker-specific information struggles to indicate emotional dynamics. In this paper, motivated by the fact that speaker characteristics play a crucial role and LLMs have rich world knowledge, we present LaERC-S, a novel framework that stimulates LLMs to explore speaker characteristics involving the mental state and behavior of interlocutors, for accurate emotion predictions. To endow LLMs with these knowledge information, we adopt the two-stage learning to make the models reason speaker characteristics and track the emotion of the speaker in complex conversation scenarios. Extensive experiments on three benchmark datasets demonstrate the superiority of LaERC-S, reaching the new state-of-the-art.

2023

pdf bib
Towards General Error Diagnosis via Behavioral Testing in Machine Translation
Junjie Wu | Lemao Liu | Dit-Yan Yeung
Findings of the Association for Computational Linguistics: EMNLP 2023

Behavioral testing offers a crucial means of diagnosing linguistic errors and assessing capabilities of NLP models. However, applying behavioral testing to machine translation (MT) systems is challenging as it generally requires human efforts to craft references for evaluating the translation quality of such systems on newly generated test cases. Existing works in behavioral testing of MT systems circumvent this by evaluating translation quality without references, but this restricts diagnosis to specific types of errors, such as incorrect translation of single numeric or currency words. In order to diagnose general errors, this paper proposes a new Bilingual Translation Pair Generation based Behavior Testing (BTPGBT) framework for conducting behavioral testing of MT systems. The core idea of BTPGBT is to employ a novel bilingual translation pair generation (BTPG) approach that automates the construction of high-quality test cases and their pseudoreferences. Experimental results on various MT systems demonstrate that BTPGBT could provide comprehensive and accurate behavioral testing results for general error diagnosis, which further leads to several insightful findings. Our code and data are available at https: //github.com/wujunjie1998/BTPGBT.

2021

pdf bib
Augmenting Topic Aware Knowledge-Grounded Conversations with Dynamic Built Knowledge Graphs
Junjie Wu | Hao Zhou
Proceedings of Deep Learning Inside Out (DeeLIO): The 2nd Workshop on Knowledge Extraction and Integration for Deep Learning Architectures

Dialog topic management and background knowledge selection are essential factors for the success of knowledge-grounded open-domain conversations. However, existing models are primarily performed with symmetric knowledge bases or stylized with pre-defined roles between conversational partners, while people usually have their own knowledge before a real chit-chat. To address this problem, we propose a dynamic knowledge graph-based topical conversation model (DKGT). Given a dialog history context, our model first builds knowledge graphs from the context as an imitation of human’s ability to form logical relationships between known and unknown topics during a conversation. This logical information will be fed into a topic predictor to promote topic management, then facilitate background knowledge selection and response generation. To the best of our knowledge, this is the first attempt to dynamically form knowledge graphs between chatting topics to assist dialog topic management during a conversation. Experimental results manifest that our model can properly schedule conversational topics and pick suitable knowledge to generate informative responses comparing to several strong baselines.