Existing self-supervised methods in natural language processing (NLP), especially hierarchical text classification (HTC), mainly focus on self-supervised contrastive learning, extremely relying on human-designed augmentation rules to generate contrastive samples, which can potentially corrupt or distort the original information. In this paper, we tend to investigate the feasibility of a contrastive learning scheme in which the semantic and syntactic information inherent in the input sample is adequately reserved in the contrastive samples and fused during the learning process. Specifically, we propose an information lossless contrastive learning strategy for HTC, namely Hierarchy-aware Information Lossless contrastive Learning (HILL), which consists of a text encoder representing the input document, and a structure encoder directly generating the positive sample. The structure encoder takes the document embedding as input, extracts the essential syntactic information inherent in the label hierarchy with the principle of structural entropy minimization, and injects the syntactic information into the text representation via hierarchical representation learning. Experiments on three common datasets are conducted to verify the superiority of HILL.
Hierarchical text classification (HTC) is a challenging subtask of multi-label classification as the labels form a complex hierarchical structure. Existing dual-encoder methods in HTC achieve weak performance gains with huge memory overheads and their structure encoders heavily rely on domain knowledge. Under such observation, we tend to investigate the feasibility of a memory-friendly model with strong generalization capability that could boost the performance of HTC without prior statistics or label semantics. In this paper, we propose Hierarchy-aware Tree Isomorphism Network (HiTIN) to enhance the text representations with only syntactic information of the label hierarchy. Specifically, we convert the label hierarchy into an unweighted tree structure, termed coding tree, with the guidance of structural entropy. Then we design a structure encoder to incorporate hierarchy-aware information in the coding tree into text representations. Besides the text encoder, HiTIN only contains a few multi-layer perceptions and linear transformations, which greatly saves memory. We conduct experiments on three commonly used datasets and the results demonstrate that HiTIN could achieve better test performance and less memory consumption than state-of-the-art (SOTA) methods.
Text classification is a primary task in natural language processing (NLP). Recently, graph neural networks (GNNs) have developed rapidly and been applied to text classification tasks. As a special kind of graph data, the tree has a simpler data structure and can provide rich hierarchical information for text classification. Inspired by the structural entropy, we construct the coding tree of the graph by minimizing the structural entropy and propose HINT, which aims to make full use of the hierarchical information contained in the text for the task of text classification. Specifically, we first establish a dependency parsing graph for each text. Then we designed a structural entropy minimization algorithm to decode the key information in the graph and convert each graph to its corresponding coding tree. Based on the hierarchical structure of the coding tree, the representation of the entire graph is obtained by updating the representation of non-leaf nodes in the coding tree layer by layer. Finally, we present the effectiveness of hierarchical information in text classification. Experimental results show that HINT outperforms the state-of-the-art methods on popular benchmarks while having a simple structure and few parameters.