Kang He
2024
Refining and Synthesis: A Simple yet Effective Data Augmentation Framework for Cross-Domain Aspect-based Sentiment Analysis
Haining Wang
|
Kang He
|
Bobo Li
|
Lei Chen
|
Fei Li
|
Xu Han
|
Chong Teng
|
Donghong Ji
Findings of the Association for Computational Linguistics: ACL 2024
Aspect-based Sentiment Analysis (ABSA) is extensively researched in the NLP community, yet related models face challenges due to data sparsity when shifting to a new domain. Hence, data augmentation for cross-domain ABSA has attracted increasing attention in recent years. However, two key points have been neglected in prior studies: First, target domain unlabeled data are labeled with pseudo labels by the model trained in the source domain with little quality control, leading to inaccuracy and error propagation. Second, the label and text patterns of generated labeled data are monotonous, thus limiting the robustness and generalization ability of trained ABSA models. In this paper, we aim to design a simple yet effective framework to address the above shortages in ABSA data augmentation, called Refining and Synthesis Data Augmentation (RSDA). Our framework roughly includes two steps: First, it refines generated labeled data using a natural language inference (NLI) filter to control data quality. Second, it synthesizes diverse labeled data via novel label composition and paraphrase approaches. We conduct experiments on 4 kinds of ABSA subtasks, and our framework outperforms 7 strong baselines, demonstrating its effectiveness.
Prompt-Based Bias Calibration for Better Zero/Few-Shot Learning of Language Models
Kang He
|
Yinghan Long
|
Kaushik Roy
Findings of the Association for Computational Linguistics: EMNLP 2024
Prompt-based learning is susceptible to intrinsic bias present in pre-trained language models (LMs), leading to sub-optimal performance in prompt-based zero/few-shot settings. In this work, we propose a null-input prompting method to calibrate intrinsic bias encoded in pre-trained LMs. Different from prior efforts that address intrinsic bias primarily for social fairness and often involve excessive computational cost, our objective is to explore enhancing LMs’ performance in downstream zero/few-shot learning while emphasizing the efficiency of intrinsic bias calibration. Specifically, we leverage a diverse set of auto-selected null-meaning inputs generated from GPT-4 to probe intrinsic bias of pre-trained LMs. Utilizing the bias-reflected probability distribution, we formulate a distribution disparity loss for bias calibration, where we exclusively update bias parameters (0.1% of total parameters) of LMs towards equal probability distribution. Experimental results show that the calibration promotes an equitable starting point for LMs while preserving language modeling abilities. Across a wide range of datasets, including sentiment analysis and topic classification, our method significantly improves zero/few-shot learning performance of LMs for both in-context learning and prompt-based fine-tuning (on average 9% and 2%, respectively).