Kanishk Singh
2024
TinyStyler: Efficient Few-Shot Text Style Transfer with Authorship Embeddings
Zachary Horvitz
|
Ajay Patel
|
Kanishk Singh
|
Chris Callison-Burch
|
Kathleen McKeown
|
Zhou Yu
Findings of the Association for Computational Linguistics: EMNLP 2024
The goal of text style transfer is to transform the style of texts while preserving their original meaning, often with only a few examples of the target style. Existing style transfer methods generally rely on the few-shot capabilities of large language models or on complex controllable text generation approaches that are inefficient and underperform on fluency metrics. We introduce TinyStyler, a lightweight but effective approach, which leverages a small language model (800M params) and pre-trained authorship embeddings to perform efficient, few-shot text style transfer. We evaluate on the challenging task of authorship style transfer and find TinyStyler outperforms strong approaches such as GPT-4. We also evaluate TinyStyler’s ability to perform text attribute style transfer (formal ↔ informal) with automatic and human evaluations and find that the approach outperforms recent controllable text generation methods.
2023
Learning to Follow Object-Centric Image Editing Instructions Faithfully
Tuhin Chakrabarty
|
Kanishk Singh
|
Arkadiy Saakyan
|
Smaranda Muresan
Findings of the Association for Computational Linguistics: EMNLP 2023
Natural language instructions are a powerful interface for editing the outputs of text-to-image diffusion models. However, several challenges need to be addressed: 1) underspecification (the need to model the implicit meaning of instructions) 2) grounding (the need to localize where the edit has to be performed), 3) faithfulness (the need to preserve the elements of the image not affected by the edit instruction). Current approaches focusing on image editing with natural language instructions rely on automatically generated paired data, which, as shown in our investigation, is noisy and sometimes nonsensical, exacerbating the above issues. Building on recent advances in segmentation, Chain-of-Thought prompting, and visual question answering, we significantly improve the quality of the paired data. In addition, we enhance the supervision signal by highlighting parts of the image that need to be changed by the instruction. The model fine-tuned on the improved data is capable of performing fine-grained object-centric edits better than state-of-the-art baselines, mitigating the problems outlined above, as shown by automatic and human evaluations. Moreover, our model is capable of generalizing to domains unseen during training, such as visual metaphors.
2021
Team Phoenix at WASSA 2021: Emotion Analysis on News Stories with Pre-Trained Language Models
Yash Butala
|
Kanishk Singh
|
Adarsh Kumar
|
Shrey Shrivastava
Proceedings of the Eleventh Workshop on Computational Approaches to Subjectivity, Sentiment and Social Media Analysis
Emotion is fundamental to humanity. The ability to perceive, understand and respond to social interactions in a human-like manner is one of the most desired capabilities in artificial agents, particularly in social-media bots. Over the past few years, computational understanding and detection of emotional aspects in language have been vital in advancing human-computer interaction. The WASSA Shared Task 2021 released a dataset of news-stories across two tracks, Track-1 for Empathy and Distress Prediction and Track-2 for Multi-Dimension Emotion prediction at the essay-level. We describe our system entry for the WASSA 2021 Shared Task (for both Track-1 and Track-2), where we leveraged the information from Pre-trained language models for Track-specific Tasks. Our proposed models achieved an Average Pearson Score of 0.417, and a Macro-F1 Score of 0.502 in Track 1 and Track 2, respectively. In the Shared Task leaderboard, we secured the fourth rank in Track 1 and the second rank in Track 2.
Search
Fix data
Co-authors
- Yash Butala 1
- Chris Callison-Burch 1
- Tuhin Chakrabarty 1
- Zachary Horvitz 1
- Adarsh Kumar 1
- show all...