Kush Varshney


2024

pdf bib
Towards Healthy AI: Large Language Models Need Therapists Too
Baihan Lin | Djallel Bouneffouf | Guillermo Cecchi | Kush Varshney
Proceedings of the 4th Workshop on Trustworthy Natural Language Processing (TrustNLP 2024)

Recent advances in large language models (LLMs) have led to the development of powerful chatbots capable of engaging in fluent human-like conversations. However, these chatbots may be harmful, exhibiting manipulation, gaslighting, narcissism, and other toxicity. To work toward safer and more well-adjusted models, we propose a framework that uses psychotherapy to identify and mitigate harmful chatbot behaviors. The framework involves four different artificial intelligence (AI) agents: the Chatbot whose behavior is to be adjusted, a User, a Therapist, and a Critic that can be paired with reinforcement learning-based LLM tuning. We illustrate the framework with a working example of a social conversation involving four instances of ChatGPT, showing that the framework may mitigate the toxicity in conversations between LLM-driven chatbots and people. Although there are still several challenges and directions to be addressed in the future, the proposed framework is a promising approach to improving the alignment between LLMs and human values.

2021

pdf bib
A Research Framework for Understanding Education-Occupation Alignment with NLP Techniques
Renzhe Yu | Subhro Das | Sairam Gurajada | Kush Varshney | Hari Raghavan | Carlos Lastra-Anadon
Proceedings of the 1st Workshop on NLP for Positive Impact

Understanding the gaps between job requirements and university curricula is crucial for improving student success and institutional effectiveness in higher education. In this context, natural language processing (NLP) can be leveraged to generate granular insights into where the gaps are and how they change. This paper proposes a three-dimensional research framework that combines NLP techniques with economic and educational research to quantify the alignment between course syllabi and job postings. We elaborate on key technical details of the framework and further discuss its potential positive impacts on practice, including unveiling the inequalities in and long-term consequences of education-occupation alignment to inform policymakers, and fostering information systems to support students, institutions and employers in the school-to-work pipeline.

pdf bib
Biomedical Interpretable Entity Representations
Diego Garcia-Olano | Yasumasa Onoe | Ioana Baldini | Joydeep Ghosh | Byron Wallace | Kush Varshney
Findings of the Association for Computational Linguistics: ACL-IJCNLP 2021