Kyohoon Jin


2024

pdf bib
Multi-News+: Cost-efficient Dataset Cleansing via LLM-based Data Annotation
Juhwan Choi | JungMin Yun | Kyohoon Jin | YoungBin Kim
Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing

The quality of the dataset is crucial for ensuring optimal performance and reliability of downstream task models. However, datasets often contain noisy data inadvertently included during the construction process. Numerous attempts have been made to correct this issue through human annotators. However, hiring and managing human annotators is expensive and time-consuming. As an alternative, recent studies are exploring the use of large language models (LLMs) for data annotation.In this study, we present a case study that extends the application of LLM-based data annotation to enhance the quality of existing datasets through a cleansing strategy. Specifically, we leverage approaches such as chain-of-thought and majority voting to imitate human annotation and classify unrelated documents from the Multi-News dataset, which is widely used for the multi-document summarization task. Through our proposed cleansing method, we introduce an enhanced Multi-News+. By employing LLMs for data cleansing, we demonstrate an efficient and effective approach to improving dataset quality without relying on expensive human annotation efforts.

pdf bib
GPTs Are Multilingual Annotators for Sequence Generation Tasks
Juhwan Choi | Eunju Lee | Kyohoon Jin | YoungBin Kim
Findings of the Association for Computational Linguistics: EACL 2024

Data annotation is an essential step for constructing new datasets. However, the conventional approach of data annotation through crowdsourcing is both time-consuming and expensive. In addition, the complexity of this process increases when dealing with low-resource languages owing to the difference in the language pool of crowdworkers. To address these issues, this study proposes an autonomous annotation method by utilizing large language models, which have been recently demonstrated to exhibit remarkable performance. Through our experiments, we demonstrate that the proposed method is not just cost-efficient but also applicable for low-resource language annotation. Additionally, we constructed an image captioning dataset using our approach and are committed to open this dataset for future study. We have opened our source code for further study and reproducibility.

pdf bib
AutoAugment Is What You Need: Enhancing Rule-based Augmentation Methods in Low-resource Regimes
Juhwan Choi | Kyohoon Jin | Junho Lee | Sangmin Song | YoungBin Kim
Proceedings of the 18th Conference of the European Chapter of the Association for Computational Linguistics: Student Research Workshop

Text data augmentation is a complex problem due to the discrete nature of sentences. Although rule-based augmentation methods are widely adopted in real-world applications because of their simplicity, they suffer from potential semantic damage. Previous researchers have suggested easy data augmentation with soft labels (softEDA), employing label smoothing to mitigate this problem. However, finding the best factor for each model and dataset is challenging; therefore, using softEDA in real-world applications is still difficult. In this paper, we propose adapting AutoAugment to solve this problem. The experimental results suggest that the proposed method can boost existing augmentation methods and that rule-based methods can enhance cutting-edge pretrained language models. We offer the source code.

pdf bib
Enhancing Effectiveness and Robustness in a Low-Resource Regime via Decision-Boundary-aware Data Augmentation
Kyohoon Jin | Junho Lee | Juhwan Choi | Sangmin Song | Youngbin Kim
Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024)

Efforts to leverage deep learning models in low-resource regimes have led to numerous augmentation studies. However, the direct application of methods, such as mixup and cutout, is limited due to the discrete characteristics of the textual data. While methods using pre trained language models have exhibited good efficiency, they require additional considerations for robustness. Inspired by recent studies on decision boundaries, this paper proposes a decision-boundary-aware data augmentation strategy to enhance robustness using pretrained language models. The proposed technique first focuses on shifting the latent features closer to the decision boundary, followed by reconstruction to generate an ambiguous version with a soft label. Additionally, mid-K sampling is suggested to enhance the diversity of the generated sentences. This paper demonstrates the performance of the proposed augmentation strategy compared to other methods through extensive experiments. Furthermore, the ablation study demonstrates the effect of soft labels and mid-K sampling and the extensibility of the method with curriculum data augmentation.

2021

pdf bib
Restoring and Mining the Records of the Joseon Dynasty via Neural Language Modeling and Machine Translation
Kyeongpil Kang | Kyohoon Jin | Soyoung Yang | Soojin Jang | Jaegul Choo | Youngbin Kim
Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies

Understanding voluminous historical records provides clues on the past in various aspects, such as social and political issues and even natural science facts. However, it is generally difficult to fully utilize the historical records, since most of the documents are not written in a modern language and part of the contents are damaged over time. As a result, restoring the damaged or unrecognizable parts as well as translating the records into modern languages are crucial tasks. In response, we present a multi-task learning approach to restore and translate historical documents based on a self-attention mechanism, specifically utilizing two Korean historical records, ones of the most voluminous historical records in the world. Experimental results show that our approach significantly improves the accuracy of the translation task than baselines without multi-task learning. In addition, we present an in-depth exploratory analysis on our translated results via topic modeling, uncovering several significant historical events.