Kyumin Park


2023

pdf bib
StyLEx: Explaining Style Using Human Lexical Annotations
Shirley Anugrah Hayati | Kyumin Park | Dheeraj Rajagopal | Lyle Ungar | Dongyeop Kang
Proceedings of the 17th Conference of the European Chapter of the Association for Computational Linguistics

Large pre-trained language models have achieved impressive results on various style classification tasks, but they often learn spurious domain-specific words to make predictions (Hayati et al., 2021). While human explanation highlights stylistic tokens as important features for this task, we observe that model explanations often do not align with them. To tackle this issue, we introduce StyLEx, a model that learns from human annotated explanations of stylistic features and jointly learns to perform the task and predict these features as model explanations. Our experiments show that StyLEx can provide human like stylistic lexical explanations without sacrificing the performance of sentence-level style prediction on both in-domain and out-of-domain datasets. Explanations from StyLEx show significant improvements in explanation metrics (sufficiency, plausibility) and when evaluated with human annotations. They are also more understandable by human judges compared to the widely-used saliency-based explanation baseline.

2021

pdf bib
SSMix: Saliency-Based Span Mixup for Text Classification
Soyoung Yoon | Gyuwan Kim | Kyumin Park
Findings of the Association for Computational Linguistics: ACL-IJCNLP 2021