Leonardo Rigutini


2024

pdf bib
Clue-Instruct: Text-Based Clue Generation for Educational Crossword Puzzles
Andrea Zugarini | Kamyar Zeinalipour | Surya Sai Kadali | Marco Maggini | Marco Gori | Leonardo Rigutini
Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024)

Crossword puzzles are popular linguistic games often used as tools to engage students in learning. Educational crosswords are characterized by less cryptic and more factual clues that distinguish them from traditional crossword puzzles. Despite there exist several publicly available clue-answer pair databases for traditional crosswords, educational clue-answer pairs datasets are missing. In this article, we propose a methodology to build educational clue generation datasets that can be used to instruct Large Language Models (LLMs). By gathering from Wikipedia pages informative content associated with relevant keywords, we use Large Language Models to automatically generate pedagogical clues related to the given input keyword and its context. With such an approach, we created clue-instruct, a dataset containing 44,075 unique examples with text-keyword pairs associated with three distinct crossword clues. We used clue-instruct to instruct different LLMs to generate educational clues from a given input content and keyword. Both human and automatic evaluations confirmed the quality of the generated clues, thus validating the effectiveness of our approach.

2023

pdf bib
BUSTER: a “BUSiness Transaction Entity Recognition” dataset
Andrea Zugarini | Andrew Zamai | Marco Ernandes | Leonardo Rigutini
Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing: Industry Track

Albeit Natural Language Processing has seen major breakthroughs in the last few years, transferring such advances into real-world business cases can be challenging. One of the reasons resides in the displacement between popular benchmarks and actual data. Lack of supervision, unbalanced classes, noisy data and long documents often affect real problems in vertical domains such as finance, law and health. To support industry-oriented research, we present BUSTER, a BUSiness Transaction Entity Recognition dataset. The dataset consists of 3779 manually annotated documents on financial transactions. We establish several baselines exploiting both general-purpose and domain-specific language models. The best performing model is also used to automatically annotate 6196 documents, which we release as an additional silver corpus to BUSTER.

pdf bib
Multi-word Tokenization for Sequence Compression
Leonidas Gee | Leonardo Rigutini | Marco Ernandes | Andrea Zugarini
Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing: Industry Track

Large Language Models have proven highly successful at modelling a variety of tasks. However, this comes at a steep computational cost that hinders wider industrial uptake. In this paper, we present MWT: a Multi-Word Tokenizer that goes beyond word boundaries by representing frequent multi-word expressions as single tokens. MWTs produce a more compact and efficient tokenization that yields two benefits: (1) Increase in performance due to a greater coverage of input data given a fixed sequence length budget; (2) Faster and lighter inference due to the ability to reduce the sequence length with negligible drops in performance. Our results show that MWT is more robust across shorter sequence lengths, thus allowing for major speedups via early sequence truncation.

2022

pdf bib
Fast Vocabulary Transfer for Language Model Compression
Leonidas Gee | Andrea Zugarini | Leonardo Rigutini | Paolo Torroni
Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing: Industry Track

Real-world business applications require a trade-off between language model performance and size. We propose a new method for model compression that relies on vocabulary transfer. We evaluate the method on various vertical domains and downstream tasks. Our results indicate that vocabulary transfer can be effectively used in combination with other compression techniques, yielding a significant reduction in model size and inference time while marginally compromising on performance.

2018

pdf bib
Enhancing Modern Supervised Word Sense Disambiguation Models by Semantic Lexical Resources
Stefano Melacci | Achille Globo | Leonardo Rigutini
Proceedings of the Eleventh International Conference on Language Resources and Evaluation (LREC 2018)