Liang Dandan


2024

pdf bib
ESC-Eval: Evaluating Emotion Support Conversations in Large Language Models
Haiquan Zhao | Lingyu Li | Shisong Chen | Shuqi Kong | Jiaan Wang | Kexin Huang | Tianle Gu | Yixu Wang | Jian Wang | Liang Dandan | Zhixu Li | Yan Teng | Yanghua Xiao | Yingchun Wang
Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing

Emotion Support Conversation (ESC) is a crucial application, which aims to reduce human stress, offer emotional guidance, and ultimately enhance human mental and physical well-being. With the advancement of Large Language Models (LLMs), many researchers have employed LLMs as the ESC models. However, the evaluation of these LLM-based ESCs remains uncertain. In detail, we first re-organize 2,801 role-playing cards from seven existing datasets to define the roles of the role-playing agent. Second, we train a specific role-playing model called ESC-Role which behaves more like a confused person than GPT-4. Third, through ESC-Role and organized role cards, we systematically conduct experiments using 14 LLMs as the ESC models, including general AI-assistant LLMs (e.g., ChatGPT) and ESC-oriented LLMs (e.g., ExTES-Llama). We conduct comprehensive human annotations on interactive multi-turn dialogues of different ESC models. The results show that ESC-oriented LLMs exhibit superior ESC abilities compared to general AI-assistant LLMs, but there is still a gap behind human performance. Moreover, to automate the scoring process for future ESC models, we developed ESC-RANK, which trained on the annotated data, achieving a scoring performance surpassing 35 points of GPT-4.