Liangwei Yang
2024
PRACT: Optimizing Principled Reasoning and Acting of LLM Agent
Zhiwei Liu
|
Weiran Yao
|
Jianguo Zhang
|
Zuxin Liu
|
Liangwei Yang
|
Rithesh R N
|
Tian Lan
|
Ming Zhu
|
Juntao Tan
|
Shirley Kokane
|
Thai Quoc Hoang
|
Juan Carlos Niebles
|
Shelby Heinecke
|
Huan Wang
|
Silvio Savarese
|
Caiming Xiong
Proceedings of the 28th Conference on Computational Natural Language Learning
We introduce the Principled Reasoning and Acting (PRAct) framework, a novel method for learning and enforcing action principles from trajectory data. Central to our approach is the use of text gradients from a reflection and optimization engine to derive these action principles. To adapt action principles to specific task requirements, we propose a new optimization framework, Reflective Principle Optimization (RPO). After execution, RPO employs a reflector to critique current action principles and an optimizer to update them accordingly.We investigate the RPO framework under two scenarios: Reward-RPO, which uses environmental rewards for reflection, and Self-RPO, which conducts self-reflection without external rewards. Additionally, we developed two RPO methods, RPO-Traj and RPO-Batch, to adapt to different settings.Experimental results across four environments demonstrate that the PRAct agent, leveraging the RPO framework, can effectively learn and apply action principles to enhance performance.
Search
Co-authors
- Zhiwei Liu 1
- Weiran Yao 1
- Jianguo Zhang 1
- Zuxin Liu 1
- Rithesh R N 1
- show all...