Liangwei Yang
2025
Taxonomy-Guided Zero-Shot Recommendations with LLMs
Yueqing Liang
|
Liangwei Yang
|
Chen Wang
|
Xiongxiao Xu
|
Philip S. Yu
|
Kai Shu
Proceedings of the 31st International Conference on Computational Linguistics
With the emergence of large language models (LLMs) and their ability to perform a variety of tasks, their application in recommender systems (RecSys) has shown promise. However, we are facing significant challenges when deploying LLMs into RecSys, such as limited prompt length, unstructured item information, and un-constrained generation of recommendations, leading to sub-optimal performance. To address these issues, we propose a novel Taxonomy-guided Recommendation (TaxRec) framework to empower LLM with category information in a systematic approach. Specifically, TaxRec features a two-step process: one-time taxonomy categorization and LLM-based recommendation. In the one-time taxonomy categorization phase, we organize and categorize items, ensuring clarity and structure of item information. In the LLM-based recommendation phase, we feed the structured items into LLM prompts, achieving efficient token utilization and controlled feature generation. This enables more accurate, contextually relevant, and zero-shot recommendations without the need for domain-specific fine-tuning. Experimental results demonstrate that TaxRec significantly enhances recommendation quality compared to traditional zero-shot approaches, showcasing its efficacy as a personal recommender with LLMs. Code is available at: https://github.com/yueqingliang1/TaxRec.
2024
PRACT: Optimizing Principled Reasoning and Acting of LLM Agent
Zhiwei Liu
|
Weiran Yao
|
Jianguo Zhang
|
Zuxin Liu
|
Liangwei Yang
|
Rithesh R N
|
Tian Lan
|
Ming Zhu
|
Juntao Tan
|
Shirley Kokane
|
Thai Quoc Hoang
|
Juan Carlos Niebles
|
Shelby Heinecke
|
Huan Wang
|
Silvio Savarese
|
Caiming Xiong
Proceedings of the 28th Conference on Computational Natural Language Learning
We introduce the Principled Reasoning and Acting (PRAct) framework, a novel method for learning and enforcing action principles from trajectory data. Central to our approach is the use of text gradients from a reflection and optimization engine to derive these action principles. To adapt action principles to specific task requirements, we propose a new optimization framework, Reflective Principle Optimization (RPO). After execution, RPO employs a reflector to critique current action principles and an optimizer to update them accordingly.We investigate the RPO framework under two scenarios: Reward-RPO, which uses environmental rewards for reflection, and Self-RPO, which conducts self-reflection without external rewards. Additionally, we developed two RPO methods, RPO-Traj and RPO-Batch, to adapt to different settings.Experimental results across four environments demonstrate that the PRAct agent, leveraging the RPO framework, can effectively learn and apply action principles to enhance performance.
Search
Fix data
Co-authors
- Shelby Heinecke 1
- Thai Quoc Hoang 1
- Shirley Kokane 1
- Tian Lan 1
- Yueqing Liang 1
- show all...