Liangyue Li


2024

pdf bib
Mixed Distillation Helps Smaller Language Models Reason Better
Li Chenglin | Qianglong Chen | Liangyue Li | Caiyu Wang | Feng Tao | Yicheng Li | Zulong Chen | Yin Zhang
Findings of the Association for Computational Linguistics: EMNLP 2024

As large language models (LLMs) have demonstrated impressive multiple step-by-step reasoning capabilities in recent natural language processing (NLP) reasoning tasks, many studies are interested in distilling reasoning abilities into smaller language models (SLMs) via fine-tuning. Previous distillation methods usually utilize the capabilities of LLMs to generate chain-of-thought (CoT) samples to teach SLMs. However, this distillation approach performs poorly in certain scenarios due to the limitations of CoT. In this work, we introduce a novel Mixed Distillation (MD) framework, distilling multiple step-by-step reasoning abilities into SLMs. First, we leverage LLMs to generate multiple step-by-step reasoning rationales by sampling automatically. Then, we create high-quality, well-balanced mixed thought data and design a novel multi-task loss to help SLMs better learn and adaptively activate multiple step-by-step reasoning. Our extensive experiments demonstrate that MD enhances both single-path (using either CoT or PoT) and multi-path (using both CoT and PoT) reasoning abilities of SLMs during inference across reasoning tasks. Notably, a single model generated by MD exceeds the comprehensive performance of an ensemble of two individual CoT and PoT distilled models. Mistral-7B using MD can achieve remarkable improvements of 87.5%, 74.0% and 77.1% on SVAMP, GSM8K and ASDIV, respectively, outperforming the teacher model, GPT-3.5-Turbo. We hope our work provides insight into SLMs’ multiple step-by-step reasoning abilities.

pdf bib
Retrieval-style In-context Learning for Few-shot Hierarchical Text Classification
Huiyao Chen | Yu Zhao | Zulong Chen | Mengjia Wang | Liangyue Li | Meishan Zhang | Min Zhang
Transactions of the Association for Computational Linguistics, Volume 12

Hierarchical text classification (HTC) is an important task with broad applications, and few-shot HTC has gained increasing interest recently. While in-context learning (ICL) with large language models (LLMs) has achieved significant success in few-shot learning, it is not as effective for HTC because of the expansive hierarchical label sets and extremely ambiguous labels. In this work, we introduce the first ICL-based framework with LLM for few-shot HTC. We exploit a retrieval database to identify relevant demonstrations, and an iterative policy to manage multi-layer hierarchical labels. Particularly, we equip the retrieval database with HTC label-aware representations for the input texts, which is achieved by continual training on a pretrained language model with masked language modeling (MLM), layer-wise classification (CLS, specifically for HTC), and a novel divergent contrastive learning (DCL, mainly for adjacent semantically similar labels) objective. Experimental results on three benchmark datasets demonstrate superior performance of our method, and we can achieve state-of-the-art results in few-shot HTC.