Libo Zhao
2024
PsFuture: A Pseudo-Future-based Zero-Shot Adaptive Policy for Simultaneous Machine Translation
Libo Zhao
|
Jing Li
|
Ziqian Zeng
Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing
Simultaneous Machine Translation (SiMT) requires target tokens to be generated in real-time as streaming source tokens are consumed. Traditional approaches to SiMT typically require sophisticated architectures and extensive parameter configurations for training adaptive read/write policies, which in turn demand considerable computational power and memory. We propose PsFuture, the first zero-shot adaptive read/write policy for SiMT, enabling the translation model to independently determine read/write actions without the necessity for additional training. Furthermore, we introduce a novel training strategy, Prefix-to-Full (P2F), specifically tailored to adjust offline translation models for SiMT applications, exploiting the advantages of the bidirectional attention mechanism inherent in offline models. Experiments across multiple benchmarks demonstrate that our zero-shot policy attains performance on par with strong baselines and the P2F method can further enhance performance, achieving an outstanding trade-off between translation quality and latency.
2023
Adaptive Policy with Wait-k Model for Simultaneous Translation
Libo Zhao
|
Kai Fan
|
Wei Luo
|
Wu Jing
|
Shushu Wang
|
Ziqian Zeng
|
Zhongqiang Huang
Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing
Simultaneous machine translation (SiMT) requires a robust read/write policy in conjunction with a high-quality translation model. Traditional methods rely on either a fixed wait-k policy coupled with a standalone wait-k translation model, or an adaptive policy jointly trained with the translation model. In this study, we propose a more flexible approach by decoupling the adaptive policy model from the translation model. Our motivation stems from the observation that a standalone multi-path wait-k model performs competitively with adaptive policies utilized in state-of-the-art SiMT approaches. Specifically, we introduce DaP, a divergence-based adaptive policy, that makes read/write decisions for any translation model based on the potential divergence in translation distributions resulting from future information. DaP extends a frozen wait-k model with lightweight parameters, and is both memory and computation efficient. Experimental results across various benchmarks demonstrate that our approach offers an improved trade-off between translation accuracy and latency, outperforming strong baselines.
Search
Fix data
Co-authors
- Ziqian Zeng 2
- Kai Fan 1
- Zhongqiang Huang 1
- Wu Jing 1
- Jing Li (李婧) 1
- show all...