Ling Feng
2024
KB-Plugin: A Plug-and-play Framework for Large Language Models to Induce Programs over Low-resourced Knowledge Bases
Jiajie Zhang
|
Shulin Cao
|
Linmei Hu
|
Ling Feng
|
Lei Hou
|
Juanzi Li
Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing
Program induction (PI) has become a promising paradigm for using knowledge bases (KBs) to help large language models (LLMs) answer complex knowledge-intensive questions. Nonetheless, PI typically relies on a large number of parallel question-program pairs to make the LLM aware of the schema of a given KB, and is thus challenging for many low-resourced KBs that lack annotated data. To this end, we propose KB-Plugin, a plug-and-play framework that enables LLMs to induce programs over any low-resourced KB. Firstly, KB-Plugin adopts self-supervised learning to encode the detailed schema information of a given KB into a pluggable module, namely schema plugin. Secondly, KB-Plugin utilizes abundant annotated data from a rich-resourced KB to train another pluggable module, namely PI plugin, which can help the LLM extract question-relevant schema information from the schema plugin of any KB and utilize the information to induce programs over this KB. Experiments show that KB-Plugin outperforms SoTA low-resourced PI methods with 25x smaller backbone LLM on both large-scale and domain-specific KBs, and even approaches the performance of supervised methods.
2019
Latent Suicide Risk Detection on Microblog via Suicide-Oriented Word Embeddings and Layered Attention
Lei Cao
|
Huijun Zhang
|
Ling Feng
|
Zihan Wei
|
Xin Wang
|
Ningyun Li
|
Xiaohao He
Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)
Despite detection of suicidal ideation on social media has made great progress in recent years, people’s implicitly and anti-real contrarily expressed posts still remain as an obstacle, constraining the detectors to acquire higher satisfactory performance. Enlightened by the hidden “tree holes” phenomenon on microblog, where people at suicide risk tend to disclose their inner real feelings and thoughts to the microblog space whose authors have committed suicide, we explore the use of tree holes to enhance microblog-based suicide risk detection from the following two perspectives. (1) We build suicide-oriented word embeddings based on tree hole contents to strength the sensibility of suicide-related lexicons and context based on tree hole contents. (2) A two-layered attention mechanism is deployed to grasp intermittently changing points from individual’s open blog streams, revealing one’s inner emotional world more or less. Our experimental results show that with suicide-oriented word embeddings and attention, microblog-based suicide risk detection can achieve over 91% accuracy. A large-scale well-labelled suicide data set is also reported in the paper.