Liwen Wang


2023

pdf bib
Generative Zero-Shot Prompt Learning for Cross-Domain Slot Filling with Inverse Prompting
Xuefeng Li | Liwen Wang | Guanting Dong | Keqing He | Jinzheng Zhao | Hao Lei | Jiachi Liu | Weiran Xu
Findings of the Association for Computational Linguistics: ACL 2023

Zero-shot cross-domain slot filling aims to transfer knowledge from the labeled source domain to the unlabeled target domain. Existing models either encode slot descriptions and examples or design handcrafted question templates using heuristic rules, suffering from poor generalization capability or robustness. In this paper, we propose a generative zero-shot prompt learning framework for cross-domain slot filling, both improving generalization and robustness than previous work. Besides, we introduce a novel inverse prompting strategy to distinguish different slot types to avoid the multiple prediction problem, and an efficient prompt tuning strategy to boost higher performance only training fewer prompt parameters. Experiments and analysis demonstrate the effectiveness of our proposed framework, especially huge improvements (+13.44% F1) on the unseen slots.

2022

pdf bib
PSSAT: A Perturbed Semantic Structure Awareness Transferring Method for Perturbation-Robust Slot Filling
Guanting Dong | Daichi Guo | Liwen Wang | Xuefeng Li | Zechen Wang | Chen Zeng | Keqing He | Jinzheng Zhao | Hao Lei | Xinyue Cui | Yi Huang | Junlan Feng | Weiran Xu
Proceedings of the 29th International Conference on Computational Linguistics

Most existing slot filling models tend to memorize inherent patterns of entities and corresponding contexts from training data. However, these models can lead to system failure or undesirable outputs when being exposed to spoken language perturbation or variation in practice. We propose a perturbed semantic structure awareness transferring method for training perturbation-robust slot filling models. Specifically, we introduce two MLM-based training strategies to respectively learn contextual semantic structure and word distribution from unsupervised language perturbation corpus. Then, we transfer semantic knowledge learned from upstream training procedure into the original samples and filter generated data by consistency processing. These procedures aims to enhance the robustness of slot filling models. Experimental results show that our method consistently outperforms the previous basic methods and gains strong generalization while preventing the model from memorizing inherent patterns of entities and contexts.

pdf bib
Exploiting domain-slot related keywords description for Few-Shot Cross-Domain Dialogue State Tracking
Gao Qixiang | Guanting Dong | Yutao Mou | Liwen Wang | Chen Zeng | Daichi Guo | Mingyang Sun | Weiran Xu
Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing

Collecting dialogue data with domain-slot-value labels for dialogue state tracking (DST) could be a costly process. In this paper, we propose a novel framework based on domain-slot related description to tackle the challenge of few-shot cross-domain DST. Specifically, we design an extraction module to extract domain-slot related verbs and nouns in the dialogue. Then, we integrates them into the description, which aims to prompt the model to identify the slot information. Furthermore, we introduce a random sampling strategy to improve the domain generalization ability of the model. We utilize a pre-trained model to encode contexts and description and generates answers with an auto-regressive manner. Experimental results show that our approaches substantially outperform the existing few-shot DST methods on MultiWOZ and gain strong improvements on the slot accuracy comparing to existing slot description methods.

pdf bib
AISFG: Abundant Information Slot Filling Generator
Yang Yan | Junda Ye | Zhongbao Zhang | Liwen Wang
Proceedings of the 2022 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies

As an essential component of task-oriented dialogue systems, slot filling requires enormous labeled training data in a certain domain. However, in most cases, there is little or no target domain training data is available in the training stage. Thus, cross-domain slot filling has to cope with the data scarcity problem by zero/few-shot learning. Previous researches on zero/few-shot cross-domain slot filling focus on slot descriptions and examples while ignoring the slot type ambiguity and example ambiguity issues. To address these problems, we propose Abundant Information Slot Filling Generator (AISFG), a generative model with a novel query template that incorporates domain descriptions, slot descriptions, and examples with context. Experimental results show that our model outperforms state-of-the-art approaches in zero/few-shot slot filling task.

2021

pdf bib
Bridge to Target Domain by Prototypical Contrastive Learning and Label Confusion: Re-explore Zero-Shot Learning for Slot Filling
Liwen Wang | Xuefeng Li | Jiachi Liu | Keqing He | Yuanmeng Yan | Weiran Xu
Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing

Zero-shot cross-domain slot filling alleviates the data dependence in the case of data scarcity in the target domain, which has aroused extensive research. However, as most of the existing methods do not achieve effective knowledge transfer to the target domain, they just fit the distribution of the seen slot and show poor performance on unseen slot in the target domain. To solve this, we propose a novel approach based on prototypical contrastive learning with a dynamic label confusion strategy for zero-shot slot filling. The prototypical contrastive learning aims to reconstruct the semantic constraints of labels, and we introduce the label confusion strategy to establish the label dependence between the source domains and the target domain on-the-fly. Experimental results show that our model achieves significant improvement on the unseen slots, while also set new state-of-the-arts on slot filling task.

pdf bib
Dynamically Disentangling Social Bias from Task-Oriented Representations with Adversarial Attack
Liwen Wang | Yuanmeng Yan | Keqing He | Yanan Wu | Weiran Xu
Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies

Representation learning is widely used in NLP for a vast range of tasks. However, representations derived from text corpora often reflect social biases. This phenomenon is pervasive and consistent across different neural models, causing serious concern. Previous methods mostly rely on a pre-specified, user-provided direction or suffer from unstable training. In this paper, we propose an adversarial disentangled debiasing model to dynamically decouple social bias attributes from the intermediate representations trained on the main task. We aim to denoise bias information while training on the downstream task, rather than completely remove social bias and pursue static unbiased representations. Experiments show the effectiveness of our method, both on the effect of debiasing and the main task performance.