Manik Bhandari


2020

pdf bib
Metrics also Disagree in the Low Scoring Range: Revisiting Summarization Evaluation Metrics
Manik Bhandari | Pranav Narayan Gour | Atabak Ashfaq | Pengfei Liu
Proceedings of the 28th International Conference on Computational Linguistics

In text summarization, evaluating the efficacy of automatic metrics without human judgments has become recently popular. One exemplar work (Peyrard, 2019) concludes that automatic metrics strongly disagree when ranking high-scoring summaries. In this paper, we revisit their experiments and find that their observations stem from the fact that metrics disagree in ranking summaries from any narrow scoring range. We hypothesize that this may be because summaries are similar to each other in a narrow scoring range and are thus, difficult to rank. Apart from the width of the scoring range of summaries, we analyze three other properties that impact inter-metric agreement - Ease of Summarization, Abstractiveness, and Coverage.

pdf bib
Re-evaluating Evaluation in Text Summarization
Manik Bhandari | Pranav Narayan Gour | Atabak Ashfaq | Pengfei Liu | Graham Neubig
Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)

Automated evaluation metrics as a stand-in for manual evaluation are an essential part of the development of text-generation tasks such as text summarization. However, while the field has progressed, our standard metrics have not – for nearly 20 years ROUGE has been the standard evaluation in most summarization papers. In this paper, we make an attempt to re-evaluate the evaluation method for text summarization: assessing the reliability of automatic metrics using top-scoring system outputs, both abstractive and extractive, on recently popular datasets for both system-level and summary-level evaluation settings. We find that conclusions about evaluation metrics on older datasets do not necessarily hold on modern datasets and systems. We release a dataset of human judgments that are collected from 25 top-scoring neural summarization systems (14 abstractive and 11 extractive).

2019

pdf bib
Submodular Optimization-based Diverse Paraphrasing and its Effectiveness in Data Augmentation
Ashutosh Kumar | Satwik Bhattamishra | Manik Bhandari | Partha Talukdar
Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers)

Inducing diversity in the task of paraphrasing is an important problem in NLP with applications in data augmentation and conversational agents. Previous paraphrasing approaches have mainly focused on the issue of generating semantically similar paraphrases while paying little attention towards diversity. In fact, most of the methods rely solely on top-k beam search sequences to obtain a set of paraphrases. The resulting set, however, contains many structurally similar sentences. In this work, we focus on the task of obtaining highly diverse paraphrases while not compromising on paraphrasing quality. We provide a novel formulation of the problem in terms of monotone submodular function maximization, specifically targeted towards the task of paraphrasing. Additionally, we demonstrate the effectiveness of our method for data augmentation on multiple tasks such as intent classification and paraphrase recognition. In order to drive further research, we have made the source code available.

pdf bib
Incorporating Syntactic and Semantic Information in Word Embeddings using Graph Convolutional Networks
Shikhar Vashishth | Manik Bhandari | Prateek Yadav | Piyush Rai | Chiranjib Bhattacharyya | Partha Talukdar
Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics

Word embeddings have been widely adopted across several NLP applications. Most existing word embedding methods utilize sequential context of a word to learn its embedding. While there have been some attempts at utilizing syntactic context of a word, such methods result in an explosion of the vocabulary size. In this paper, we overcome this problem by proposing SynGCN, a flexible Graph Convolution based method for learning word embeddings. SynGCN utilizes the dependency context of a word without increasing the vocabulary size. Word embeddings learned by SynGCN outperform existing methods on various intrinsic and extrinsic tasks and provide an advantage when used with ELMo. We also propose SemGCN, an effective framework for incorporating diverse semantic knowledge for further enhancing learned word representations. We make the source code of both models available to encourage reproducible research.