Marc Brinner
2023
Model Interpretability and Rationale Extraction by Input Mask Optimization
Marc Brinner
|
Sina Zarrieß
Findings of the Association for Computational Linguistics: ACL 2023
Concurrent with the rapid progress in neural network-based models in NLP, the need for creating explanations for the predictions of these black-box models has risen steadily. Yet, especially for complex inputs like texts or images, existing interpretability methods still struggle with deriving easily interpretable explanations that also accurately represent the basis for the model’s decision. To this end, we propose a new, model-agnostic method to generate extractive explanations for predictions made by neural networks, that is based on masking parts of the input which the model does not consider to be indicative of the respective class. The masking is done using gradient-based optimization combined with a new regularization scheme that enforces sufficiency, comprehensiveness, and compactness of the generated explanation. Our method achieves state-of-the-art results in a challenging paragraph-level rationale extraction task, showing that this task can be performed without training a specialized model. We further apply our method to image inputs and obtain high-quality explanations for image classifications, which indicates that the objectives for optimizing explanation masks in text generalize to inputs of other modalities.
2022
Linking a Hypothesis Network From the Domain of Invasion Biology to a Corpus of Scientific Abstracts: The INAS Dataset
Marc Brinner
|
Tina Heger
|
Sina Zarriess
Proceedings of the first Workshop on Information Extraction from Scientific Publications
We investigate the problem of identifying the major hypothesis that is addressed in a scientific paper. To this end, we present a dataset from the domain of invasion biology that organizes a set of 954 papers into a network of fine-grained domain-specific categories of hypotheses. We carry out experiments on classifying abstracts according to these categories and present a pilot study on annotating hypothesis statements within the text. We find that hypothesis statements in our dataset are complex, varied and more or less explicit, and, importantly, spread over the whole abstract. Experiments with BERT-based classifiers show that these models are able to classify complex hypothesis statements to some extent, without being trained on sentence-level text span annotations.